

Caro professor, cara professora,

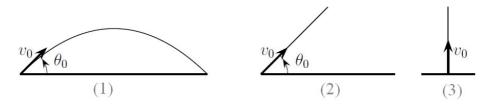
PROCESSO SELETIVO – TURMA DE 2016 FASE 1 – PROVA DE FÍSICA E SEU ENSINO

esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha, cada uma valendo 0,5 pontos; a segunda parte, com valor total 3 pontos, é constituída de duas questões discursivas, com valores indicados nas próprias questões.
A duração da prova é de 3 horas.
Boa prova.
NOME:
ASSINATURA:
Número:

PARTE 1 (valor total: 7,0 pontos)

As questões a seguir têm todas igual valor (0,5 cada).

Questão 1. Uma pedrinha é abandonada de uma altura H e cai verticalmente sobre um lago de águas paradas, atingindo uma profundidade D. O módulo da aceleração da gravidade é g. Suponha que a desaceleração causada pela massa de água seja constante. Em módulo, o valor da desaceleração é


A)
$$\left(\frac{D}{H}\right)^2 g$$

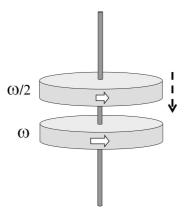
B)
$$\frac{D}{H}g$$

C)
$$\frac{H}{D}g$$

D)
$$\left(\frac{H}{D}\right)^2 g$$

Questão 2. Um projétil é lançado do solo de três formas diferentes. No primeiro lançamento, sua velocidade tem módulo v_0 e faz com a horizontal um ângulo θ_0 ($0 < \theta_0 < \pi/2$), como indica a primeira figura. No segundo lançamento, o projétil é lançado com a mesma velocidade que no caso anterior, mas sobre uma rampa inclinada do mesmo ângulo θ_0 com a horizontal, como indica a segunda figura. No terceiro lançamento, o projétil é lançado verticalmente para cima com velocidade de módulo v_0 .

Sejam Δt_1 , Δt_2 e Δt_3 os intervalos de tempo gastos pelo projétil para atingir as alturas máximas nos três lançamentos respectivamente. Desprezando a resistência do ar nos três lançamentos e o atrito com a rampa no segundo, podemos afirmar que


A)
$$\Delta t_1 < \Delta t_3 < \Delta t_2$$

B)
$$\Delta t_1 < \Delta t_3 = \Delta t_2$$

C)
$$\Delta t_1 = \Delta t_3 = \Delta t_2$$

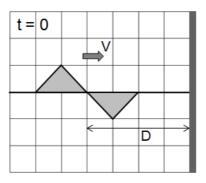
D)
$$\Delta t_1 > \Delta t_3 > \Delta t_2$$

Questão 3. Dois discos idênticos giram livremente em torno de um mesmo eixo vertical que passa pelos seus centros, como mostra a figura.

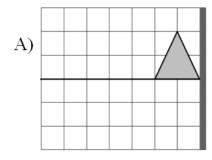
A velocidade angular do disco inferior é ω e a do disco superior é $\omega/2$. O disco superior cai sobre o inferior e, após algum tempo, o atrito faz com que os dois girem juntos. A velocidade angular final do conjunto é

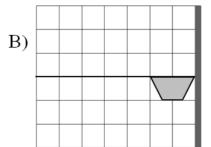
- A) $\omega/4$
- B) $3\omega/4$
- C) $3\omega/2$
- D) $\omega/2$

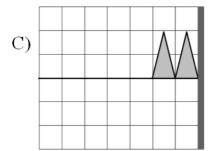
Questão 4. Duas partículas de massa m estão ligadas por uma mola de constante elástica k, como mostra a figura.

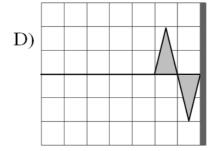

A frequência (angular) natural de vibração desse sistema é

- A) $\frac{1}{2}\sqrt{\frac{k}{m}}$
- B) $\sqrt{\frac{k}{2m}}$
- C) $\sqrt{\frac{2k}{m}}$
- D) $2\sqrt{\frac{k}{m}}$


Questão 5. Uma balsa tem a forma de uma caixa retangular 1 m de altura. A massa da balsa é 10 toneladas e quando ela está descarregada sua parte superior fica a 0,8 m da linha d'água. A maior carga que essa balsa pode transportar sem ser coberta pela água é


- A) 40 toneladas
- B) 50 toneladas
- C) 80 toneladas
- D) 100 toneladas


Questão 6. Considere uma corda esticada, com uma de suas extremidades presa a uma parede. Um pulso de onda propaga-se com velocidade V ao longo da corda, indo em direção à parede. No instante t=0 a forma da onda é a mostrada na figura abaixo. Nesse instante a distância entre o centro do pulso e a parede é D.



No instante t = D/V, a forma da onda na corda é dada por:

Questão 7. Uma onda eletromagnética propaga-se em uma determinada região do espaço. O campo elétrico da onda eletromagnética é descrito por

$$\vec{E} = \hat{x} E_0 \operatorname{sen}(kz - \omega t) + \hat{y} E_0 \cos(kz - \omega t)$$

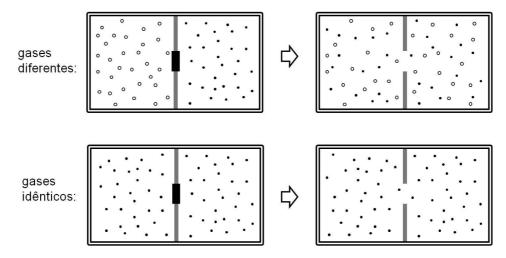
onde k > 0 e $\omega > 0$, e \hat{x} e \hat{y} são vetores unitários nas direções dos eixos x e y, perpendiculares entre si e ao eixo z. Podemos afirmar que

- A) a onda é linearmente polarizada e propaga-se no sentido positivo do eixo z.
- B) a onda tem polarização circular e propaga-se no sentido negativo do eixo z.
- C) a onda tem polarização circular e propaga-se no sentido positivo do eixo z.
- D) a onda é linearmente polarizada e propaga-se no sentido negativo do eixo z.

Questão 8. Uma fonte puntiforme emite luz a partir de um ponto situado a uma distância D abaixo da superfície livre da água de uma piscina. Sendo n o índice de refração da água relativo ao ar, o raio do maior círculo sobre a superfície da água através do qual a luz pode emergir é

- A) nD
- B) $\frac{D}{\sqrt{n^2-1}}$
- C) $\frac{D}{\sqrt{1-n^2}}$
- D) $\frac{D}{n}$

Questão 9. Uma bola de ferro cai de uma altura de 50 m, bate no solo e fica imóvel. Considere o calor específico do ferro igual a 500 J/kg/°C e o módulo da aceleração da gravidade igual a 10 m/s². Se toda a energia dissipada na queda for convertida em energia térmica da bola, sua temperatura aumentará em


- A) 0,001 °C
- B) 0,01 °C
- C) 0,1 °C
- D) 1 °C

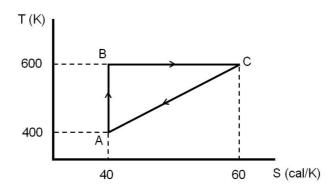
NOME:	SELEÇÃO TURMA 2016
NOIVIL.	SLLLÇAO TONIVIA 2010

Questão 10. Um recipiente isolado consiste de dois compartimentos de mesmo volume. Cada compartimento contém um mol de um gás perfeito; as pressões e as temperaturas em cada compartimento são iguais. Os compartimentos comunicam-se por meio de uma válvula, que, inicialmente, está fechada. Abrindo a válvula, os gases expandem-se, ocupando os dois compartimentos, até atingirem o estado de equilíbrio. A variação da entropia envolvida no processo é considerada em duas situações:

- 1. Gases *diferentes* nos compartimentos (a variação da entropia total do sistema é indicada por $\Delta S_{\text{diferentes}}$).
- 2. Gases *idênticos* nos compartimentos (a variação da entropia total do sistema é indicada por $\Delta S_{\text{idênticos}}$).

As duas situações estão ilustradas na figura abaixo.

Podemos afirmar que


A)
$$\Delta S_{\text{diferentes}} > 0$$
 e $\Delta S_{\text{identicos}} > 0$

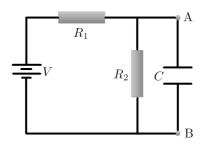
B)
$$\Delta S_{\text{diferentes}} = 0$$
 e $\Delta S_{\text{identicos}} = 0$

C)
$$\Delta S_{\text{diferentes}} = 0$$
 e $\Delta S_{\text{idênticos}} > 0$

D)
$$\Delta S_{\text{diferentes}} > 0$$
 e $\Delta S_{\text{identicos}} = 0$

Questão 11. A figura abaixo representa o ciclo reversível no plano $S \times T$ (entropia \times temperatura) efetuado por um mol de um gás ideal, monoatômico, com calor específico a volume constante igual a 3 cal mol⁻¹ K⁻¹. O trecho AB do ciclo é uma compressão isentrópica, BC é uma expansão isotérmica e CA é um processo reversível em que a temperatura é proporcional à entropia.

O trabalho realizado pelo gás sobre o meio exterior em cada um dos trechos do ciclo é


A)
$$W_{AB} = 200 \text{ cal}$$
, $W_{BC} = 2000 \text{ cal}$, $W_{CA} = -200 \text{ cal}$

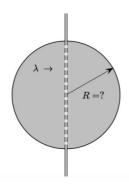
B)
$$W_{AB} = 200 \text{ cal}$$
, $W_{BC} = 12000 \text{ cal}$, $W_{CA} = -10400 \text{ cal}$

C)
$$W_{AB} = -600 \text{ cal}$$
, $W_{BC} = 12000 \text{ cal}$, $W_{CA} = -9400 \text{ cal}$

D)
$$W_{AB} = -600 \text{ cal}$$
, $W_{BC} = 2000 \text{ cal}$, $W_{CA} = 2400 \text{ cal}$

Questão 12. Considere o circuito mostrado na figura abaixo, formado por uma fonte de tensão V montada em série com um resistor de resistência R_1 e com uma associação em paralelo de um resistor R_2 e um capacitor C. Considere todos os elementos do circuito como ideais.

Após um tempo $muito\ longo$, a diferença de tensão, $V_{\rm AB}$, nos extremos do capacitor é dada por


A)
$$V_{AB} = \frac{R_2}{R_1 + R_2} V$$

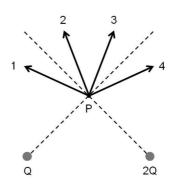
B)
$$V_{AB} = 0$$

C)
$$V_{AB} = V$$

D)
$$V_{AB} = \frac{R_1}{R_1 + R_2} V$$

Questão 13. Um fio reto muito longo carregado com uma densidade linear uniforme de carga, λ , passa através do centro de uma região esférica imaginária, como mostra a figura.

O fluxo do campo elétrico através da superfície dessa esfera vale Φ . Quanto ao raio R da esfera, podemos afirmar que

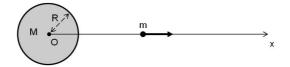

A)
$$R = \sqrt{\frac{2\pi\epsilon_0 \Phi}{\lambda}}$$

B)
$$R = \frac{\varepsilon_0 \Phi}{2\lambda}$$

C)
$$R = \varepsilon_0 \Phi$$

D) a simetria do fio não é esférica, logo, a lei de Gauss não se aplica e não é possível calcular o raio da esfera.

Questão 14. Duas cargas elétricas positivas e puntiformes, de valores Q e 2Q, estão equidistantes do ponto P, como mostrado na figura abaixo.



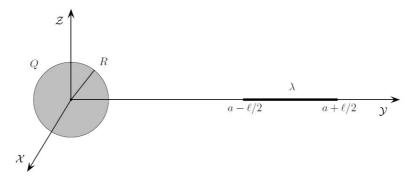
O campo elétrico resultante produzido pelas duas cargas no ponto P é mais bem representado pelo vetor

- A) 1.
- B) 2.
- C) 3.
- D) 4.

PARTE 2 (valor total: 3,0 pontos)

Questão 15 (1,5 pontos). Considere um planeta esférico homogêneo de massa M e raio R e uma partícula de massa $m \ll M$. A partícula se move ao longo de um eixo que passa pelo centro do planeta, eixo Ox, sob a ação apenas da força gravitacional exercida sobre ela pelo planeta, como mostra a figura abaixo. Suponha que um referencial solidário ao planeta seja inercial e que a origem do eixo Ox coincida com o centro do planeta.

Define-se velocidade de escape v_e da partícula como o menor valor do módulo da velocidade com que ela deve ser lançada da superfície do planeta para que nunca mais retorne a ele. Suponha que a partícula tenha sido lançada radialmente da superfície do planeta (direção do eixo Ox com sentido positivo) com velocidade de módulo v_e .


- (a) Calcule a energia mecânica da partícula.
- (b) Determine v_e .
- (c) Calcule a velocidade da partícula ao passar pelo ponto x = 2R.
- (d) Supondo que a partícula tenha sido lançada da superfície do planeta no instante t = 0, mostre que a sua posição x em um instante genérico t é dada por

$$x = \left(R^{3/2} + 3\sqrt{\frac{GM}{2}}\ t\right)^{2/3}$$

(e) Calcule o instante em que a partícula passa pela posição x = 2R.

Questão 16 (1,5 pontos). Considere uma esfera de raio R uniformemente carregada com carga elétrica total positiva Q, e uma barra de comprimento ℓ e densidade linear de carga uniforme λ , sendo $\lambda > 0$. A barra está orientada de modo que sua direção passe pelo centro da esfera da esfera e o seu ponto médio esteja a uma distância a do centro da esfera, sendo $a > R + \ell/2$. Escolha os eixos cartesianos como indica a figura, isto é, com a origem no centro da esfera e a barra ao longo do eixo OY.

- (a) Calcule a força eletrostática exercida pela esfera sobre a haste.
- (b) Obtenha uma expressão aproximada para a força exercida pela esfera sobre a barra para $a >> \ell$ e comente o resultado.
- (c) Caso a esfera não estivesse uniformemente carregada, mas possuísse uma densidade volumar de carga dada por

$$\rho(r) = \frac{5Q}{4\pi R^5} r^2$$

a força eletrostática que ela exerceria sobre a haste seria, em módulo, maior, menor ou igual à calculada no item anterior? Justifique a sua resposta.

CARTÃO DE RESPOSTAS – Parte I

Questão

Questao				
1	A	В	C	D
2	A	В	С	D
3	A	В	С	D
4	A	В	С	D
5	A	В	С	D
6	A	В	С	D
7	A	В	С	D
8	A	В	С	D
9	A	В	С	D
10	A	В	С	D
11	A	В	С	D
12	A	В	С	D
13	A	В	С	D
14	A	В	С	D

NOME: SE