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We report on a large-scale study of student learning of quantum tunneling in four traditional and four
transformed modern physics courses. In the transformed courses, which were designed to address student
difficulties found in previous research, students still struggle with many of the same issues found in other
courses. However, the reasons for these difficulties are more subtle, and many new issues are brought to the
surface. By explicitly addressing how to build models of wave functions and energy and how to relate these
models to real physical systems, we have opened up a floodgate of deep and difficult questions as students
struggle to make sense of these models. We conclude that the difficulties found in previous research are the tip
of the iceberg, and the real issue at the heart of student difficulties in learning quantum tunneling is the struggle
to build the complex models that are implicit in experts’ understanding but often not explicitly addressed in

instruction.
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I. INTRODUCTION

Tunneling is a surprising result that has served to validate
the theory of quantum mechanics by explaining many real-
world phenomena such as alpha decay, molecular bonding,
and field emission and has resulted in applications such as
scanning tunneling microscopes. As a case study in the coun-
terintuitive yet applicable nature of quantum mechanics, tun-
neling is an important part of any introductory course in
modern physics or quantum mechanics.

An examination of modern physics and quantum mechan-
ics textbooks, course syllabi, and interviews with faculty
who have taught such courses suggest that instruction in tun-
neling should help students achieve the following learning
goals: (1) calculate or discuss qualitatively (depending on the
level of the course) the probability of tunneling for various
physical situations, (2) describe the meaning of the potential-
energy and wave-function graphs, (3) visualize how these
graphs would change if the physical situation were altered
(e.g., changing barrier height and width), and (4) relate the
mathematical formalism and graphical representation of tun-
neling to the phenomenon of tunneling in the real world.

Tunneling has been a favorite topic of physics education
researchers specializing in quantum mechanics, who have
found that many students have a great deal of trouble under-
standing even the most basic aspects of this topic.!”” In de-
signing a transformed course in modern physics for engineer-
ing majors,® we drew on the literature of previous research to
develop a curriculum aimed at addressing known student dif-
ficulties in understanding quantum tunneling.® Throughout
the process of developing and refining this course, we carried
out a study to answer the following research questions:

(1) Does our transformed curriculum help to address com-
mon student difficulties in learning tunneling?

(2) Are our students achieving the learning goals de-
scribed above?

(3) What are the practices that support or hinder the
achievement of these goals?
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We find that our curriculum does help students overcome
common difficulties and achieve our learning goals. While
the common difficulties reported in the literature do arise in
the transformed classes, they are less prevalent than in com-
parable traditional classes, and they often arise for different
reasons than discussed in the previous literature. Further, we
find new difficulties that have not been previously reported,
associated with a struggle to make sense of the models of
quantum mechanics and relate them to the real world.

The difficulties discussed in the literature are associated
with the inability to apply the quantum model to abstract
model systems such as square barriers and square wells. Our
transformed course focuses on relating these abstract model
systems to reality, and our research shows that the difficulties
discussed in the literature are surface features, masking a
much more serious problem: In tunneling, as in other aspects
of quantum mechanics, students fail to grasp the basic mod-
els that we are using to describe the world as anything more
than abstract model systems. These models include wave
functions as descriptions of physical objects, potential-
energy graphs as descriptions of the interactions of those
objects with their environments, and total energy as a delo-
calized property of an entire wave function that is a function
of position. Thus, even when students can successfully over-
come problems that previous research has elucidated, such as
relating wave functions to potentials, they may not know
what a wave function or a potential is.

Hestenes'? pointed out that while “a physicist possesses a
battery of abstract models with ramifications already worked
out or easily generated,” standard physics instruction often
treats these models implicitly rather than explicitly. While
this is true even in introductory physics, the problem is more
serious in quantum mechanics, where the models are particu-
larly abstract, and the connection between the models and
the real world is more tenuous. Standard instruction in quan-
tum mechanics, including tunneling, does not provide stu-
dents with enough information to make sense of these mod-
els, to relate them to anything real, or even to recognize that
they exist. We have achieved a degree of success in teaching
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FIG. 1. (Color) The standard presentation of quantum tunneling:
a plane wave tunneling through a square potential barrier. Total
energy, potential energy, and the real part of the wave function are
all drawn on the same graph, and the real part of the wave function
is labeled as simply wave function.

quantum tunneling by making these models more explicit
and connecting them to real-world applications and suggest
further changes in this direction.

II. STANDARD PRESENTATION OF QUANTUM
TUNNELING

Most textbooks on modern physics and quantum mechan-
ics have a discussion of quantum tunneling. The discussion is
remarkably similar throughout these books, with the main
difference being that modern physics textbooks give less de-
tail. Tunneling is defined as a wave function passing through
a potential-energy barrier that is greater than its total energy.
The typical presentation includes an analysis of the plane-
wave solution to the Schrodinger equation for a square
potential-energy barrier, as shown in Fig. 1. Often the wave
function, potential energy, and total energy are drawn on the
same graph, a practice which research has shown to lead to
student confusion®® and which thoughtful authors have
avoided since the 1970s.!! Depending on the level of the
textbook, the reflection and transmission coefficients are ei-
ther derived or given. This is typically followed by a discus-
sion of some applications of quantum tunneling, such as al-
pha decay, scanning tunneling microscopes, and the
inversion of ammonia molecules. Some textbooks also in-
clude a discussion of tunneling wave packets, occasionally
showing pictures of a tunneling wave packet taken from a
numerical simulation such as in Ref. 12. Wave packets and
applications are nearly always relegated to the end of the
discussion of tunneling.

In examining the standard presentation of tunneling, one
may ask how it aligns with the learning goals in Sec. I. The
standard presentation certainly gives students practice in cal-
culating relevant quantities for the case of a plane wave and
square barrier, but it does not give students the tools to ex-
tend these calculations to more realistic systems. It also in-
cludes both a mathematical model and a discussion of physi-
cal applications of this model. However, we argue that it
does not provide sufficient links between the two. For ex-
ample, there is almost never a discussion of what physical
system could produce the square barrier shown in Fig. 1 or
of how a plane wave relates to a real particle. Further, when
real applications are discussed, their potential-energy graphs
are often not discussed, making it harder for students to re-
late the applications to the mathematical model. Thus, the
standard presentation does not provide students with the
tools to extend the model of tunneling beyond square barriers
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to the more complicated potentials involved in real physical
systems, either quantitatively or qualitatively.

III. PREVIOUS PHYSICS EDUCATION RESEARCH ON
QUANTUM TUNNELING

Many researchers have documented student difficulties in
learning quantum tunneling.'~” These researchers, working at
many institutions in the United States and Sweden, have
found a fairly consistent list of student difficulties.

The most common difficulty, discussed in all these refer-
ences, is the belief that energy is lost in tunneling. The cor-
rect description of energy in quantum tunneling is that be-
cause there is no dissipation in the Schrodinger equation,
energy is conserved, as can be seen in Fig. 1, where the total
energy is constant throughout. The barrier itself represents
the potential energy, which is zero on the left and right and
some positive constant inside the barrier.'> The kinetic en-
ergy is equal to the total energy on the left and right and is
negative inside the barrier. Ambrose! and Bao? reported the
student belief that kinetic energy is lost in tunneling, al-
though later research shows that this difficulty is not limited
to kinetic energy: Morgan et al.® quoted students as saying
that “energy” is lost, without specifying which kind of en-
ergy, and in our own work, we found that most students who
thought that energy is lost did not have a clear idea of which
energy is lost. When asked, they were just as likely to say
potential, kinetic, or total energy and often used two or even
all three types of energy interchangeably within the same
explanation.”

There are two common explanations in the literature for
the belief that energy is lost in tunneling. The first explana-
tion (reason 1), attributable to the fact that most textbooks
and lecturers draw the energy and the wave function on the
same graph, is that students confuse the two, believing that
the energy, like the wave function, decays exponentially dur-
ing tunneling.?3® This explanation is reminiscent of the clas-
sic confusion between velocity and acceleration in introduc-
tory physics;'*1” while students can correctly recite
definitions and formulas for wave function and energy, they
fail to distinguish between the two when solving problems.
The second explanation (reason 2) is that students think that
“‘work’ is done on or by the particles while inside the poten-
tial barrier”! or that energy is “dissipated” as in a physical
macroscopic tunnel.? Many researchers report on student in-
terviews showing that both these explanations are common
among students.'~’

A third possible explanation (reason 3) suggested by Bao?
is that students may be thinking of mechanical or electro-
magnetic waves, in which the energy of the wave is related
to the amplitude. However, no evidence is presented to sup-
port this explanation of student thinking. In our observations
and interviews in traditional modern physics courses, few
students have sufficient understanding of mechanical or elec-
tromagnetic waves to cause problems in their interpretation
of the amplitude of matter waves, and none have used such
an explanation. As discussed in Sec. VI B, we do see some
evidence of students using this explanation for energy loss in
our transformed modern physics course, in which the depen-
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FIG. 2. Common student difficulties reported in the literature:
incorrectly drawing the real part of the wave function with (a) an
offset between the horizontal axes on the left and right sides of the
barrier and (b) a smaller wavelength on the right than on the left.
These drawings are taken from student responses to an exam ques-
tion asking students to draw the real part of the wave function,
as discussed in Sec. VI. We have observed physics faculty making
drawings similar to both (a) and (b), and a popular introductory
quantum mechanics textbook contains a figure similar to (b).*?

dence of amplitude on energy in electromagnetic waves is
heavily stressed.

Other common student difficulties reported in the litera-
ture are the belief that reflection at a barrier is due to par-
ticles having a range of energies,' incorrectly drawing the
wave function with an offset between the horizontal axes of
the wave function on the left and right sides of the barrier, as
in Fig. 2(a),® incorrectly drawing the wave function with a
smaller wavelength on the right than on the left, as in Fig.
2(b),!?* and misinterpreting the meaning of the wavelength
and amplitude of the wave function.

In addition to these common student difficulties, in our
own previous research we found that many students do not
know what the potential-energy graph represents.” Our re-
sults from student interviews are supported by many conver-
sations with practicing physicists who report having success-
fully completed quantum mechanics courses as students
without realizing what a potential well was until much later.
We believe that this problem is due to the lack of physical
context for potential-energy graphs in the standard treatment
discussed in Sec. II. We will return to this issue later.

Brookes and Etkina®*?! argued that physicists talk about
potential using a metaphor of a physical object, as illustrated
by the terms “potential well,” “potential barrier,” and “poten-
tial step.” Because these metaphors are implicit and their
limitations are not discussed, students have a tendency to
overextend them, leading to many of the student difficulties
that other researchers have documented. This analysis* over-
laps with ours in that they also pointed out that physics pro-
fessors are not explicit in discussing the limitations of mod-
els.
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IV. IMPROVED CURRICULUM FOR TEACHING
QUANTUM TUNNELING

As part of the transformation of a modern physics course
for engineering majors,® we developed a curriculum for
teaching quantum tunneling. The course design was based on
physics education research (PER) using interactive engage-
ment techniques such as peer instruction and collaborative
homework sessions, focusing on real-world applications, and
addressing common student difficulties. The curriculum on
quantum tunneling was designed to address common student
difficulties with this topic, which were known from previous
research (see Sec. III). Throughout the course, we empha-
sized building models and relating them to the real world,
asking students in lecture, homework, and exams both to
construct their own models and to explain models that had
been presented to them.’

A. Addressing student difficulties with energy loss

Several aspects of the instruction were designed to ad-
dress the belief that energy is lost in tunneling. As discussed
in Sec. III, previous research cites two reasons that students
believe energy is lost in tunneling: (1) treating energy and
wave function interchangeably and (2) invoking dissipation.

To address reason 1, we were careful to draw energy and
wave function on separate graphs. However, since the repre-
sentation in Fig. 1, in which they are plotted on the same
graph, is ubiquitous in textbooks and other literature, it is
impossible to avoid students being exposed to it. This repre-
sentation has been so ingrained in us by our own education
that we had to be on guard to keep from drawing graphs this
way ourselves. Therefore, we also used concept questions
(multiple choice questions posed in class that students dis-
cuss in small groups and answer using a personal response
system) and homework questions to elicit student confusion
between energy and wave function and address it directly.
Figure 3 shows an example of a concept question used to
address this confusion.

To address reason 2, we emphasized energy conservation
and the lack of dissipation in the Schrodinger equation. One
key feature of our curriculum was a tutorial® adapted from
the Quantum Tunneling Tutorial in the Activity-Based Tuto-
rials Volume 2, developed by Wittmann et al.?> This tutorial
was designed to address the belief that energy is lost in tun-
neling by asking students to work out the total, kinetic, and
potential energies in each region and answer questions about
energy conservation.

B. Giving potential energy a physical context

We also designed our curriculum to address our previous
finding that students are often confused by the meaning of
the potential-energy function.” We consistently gave a physi-
cal context for potential-energy functions, presenting square
wells and barriers as illustrations of real physical systems,
rather than mere abstractions. It is worth noting that it was a
great challenge for our team of three expert physicists, in-
cluding one Nobel Laureate, to think of even a single real
physical system represented by a square well or a square
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FIG. 3. (Color) A concept question designed to elicit student
confusion between energy and wave function. The correct answer is
C but students who do not understand the meaning of superimpos-
ing a wave-function graph on an energy graph may be inclined to
answer A. When we ask this question in class, it generates a large
amount of discussion. While most students (73%—88%, depending
on the semester) eventually answer the question correctly, listening
in on student discussions reveals that most do not know the answer
right away and only figure it out through vigorous debate with their
neighbors. Even after discussion, 9%—19% give answer A.

barrier. This illustrates that for content that is outside of our
area of research, even physicists sometimes do not know
how an idealized textbook model can be applied to the real
world.

The physical examples that we decided to use in our
course are illustrated in Fig. 4: an electron in a short wire as
the context for a square well and an electron traveling
through a long wire with a thin air gap as the context for a
square barrier. Because the electrons are free to move around
within the wire, the potential energy of an electron is con-
stant anywhere inside the wire (and we can arbitrarily set the
constant value to zero). Because the electrons are bound to
the wire and require energy to escape, their potential energy
outside the wire will be a larger constant, so that the potential
energy of the system is well approximated by a finite square
well. In lecture, we ask students to predict the value of the
potential energy outside the wire by reminding them of the
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FIG. 4. (Color) Physical contexts for (a) a square well and (b) a
square barrier. A square well with width L and height U, represents
a wire with length L and work function U,. A square barrier with
width L and height U, represents two long wires with work function
U, separated by an air gap with length L.
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energy required to kick an electron out of a metal in the
photoelectric effect, which they learned about earlier in the
course. Students discuss this question in small groups and
most eventually recognize that the potential energy outside
the wire will be given by the work function of the metal.
After the first semester, we also explained the shape of the
potential energy of a wire by providing a microscopic model
in which you add up all the Coulomb potentials of the ion
cores of the atoms in the wire, as illustrated in Fig. 10.

We chose the physical context of an electron in a wire
because it has practical applications for real circuits. While
there are a few textbooks that provide physical examples of
tunneling (an electron bouncing back and forth between two
capacitors with tiny holes in them for a square well? and an
electron traveling through a series of metal tubes held at
different voltages for a square barrier®*), these examples are
so artificial that no one would ever create such a system for
any reason other than to demonstrate the abstract potentials
used in introductory quantum mechanics courses. We de-
cided against using the example of a charged bead moving
along a wire held at different potentials that was used in the
original version of the Activity-Based Tutorials?*> also be-
cause it seemed excessively artificial.

Our curriculum included many opportunities for students
to practice building models of how potential-energy graphs
relate to physical systems. For example, in interactive lec-
tures, homework problems, and a tutorial we asked students
to build up potential-energy diagrams for systems such as an
electron in a wire, a scanning tunneling microscope, and a
nucleus undergoing alpha decay. We also asked students to
reason through the physical meaning of the potential energy
for various systems.

Further, we used the term “potential energy,” rather than
the shorthand “potential,” to avoid confusion.?> Although it
would be preferable to use the symbol U, rather than the
common convention V, for potential energy, to help students
relate the potential energy in quantum mechanics to the po-
tential energy in other areas of physics, we used V in order to
be consistent with the textbook we chose for the first semes-
ter. However, we repeatedly emphasized the meaning of this
symbol and explicitly pointed out the inconsistency in nota-
tion among different areas of physics.

C. Quantum Tunneling simulation

The standard presentation of quantum tunneling discussed
in Sec. II provides an abstract and decontextualized model
that is difficult to visualize or connect to reality. The content
of this presentation is artificially constrained by what can be
calculated. Students learn to calculate transmission coeffi-
cients for plane waves tunneling through square barriers not
because this is a relevant problem but because this is the only
tunneling problem that can reasonably be calculated analyti-
cally. With modern computational techniques, however, it is
no longer necessary for the curriculum to be so constrained.

We designed the Quantum Tunneling and Wave Packets
simulation”® (see Fig. 5) to provide easily accessible interac-
tive visual models of tunneling of wave packets and plane
waves in a variety of physical situations, thus removing
many constraints on curriculum. With the simulation, we can
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FIG. 5. (Color) The Quantum Tunneling and Wave Packets simulation provides interactive visual models of tunneling of wave packets
and plane waves in a variety of physical situations and removes constraints imposed on curriculum by what problems can be easily

calculated.

begin our instruction with wave packets, rather than plane
waves, so that students can develop a visual model of what is
happening in time and space in quantum tunneling. This
simulation was developed as part of the Physics Education
Technology (PhET) project,?” which provides free interactive
computer simulations for teaching physics. Like other PhET
simulations, the Quantum Tunneling and Wave Packets simu-
lation is highly interactive, allowing students to change the
potential and total energies by dragging on the graph, so that
they can quickly explore a wide variety of physical situations
that would be cumbersome to calculate. The simulation also
provides a wide variety of representations, allowing students
to view the real part, imaginary part, magnitude, and phase
of the wave function. To address the problem of students
treating energy and wave function interchangeably, these
quantities are displayed on separate graphs in the simulation.

We note that in the first semester of the reformed course,
before developing the simulation, we attempted to use exist-
ing simulations on quantum tunneling, as many have already
been developed by others.'??8-33 However, we found that
students quickly became frustrated by the limitations of these
simulations. For example, students wanted to be able to ad-
just the properties of the wave packet and/or barrier and to
see the real part of the wave function rather than just the

magnitude. Further, all these simulations had features that
research has demonstrated to be ineffective for student learn-
ing, such as plotting the wave function and the potential on
the same graph,>® using a phase color representation®* and
limited interactivity.?> As a result, we designed our own
simulation that we used in the course starting in Spring 2006.

V. STUDY

In order to answer the research questions in Sec. I, we
collected qualitative and quantitative data on student think-
ing about quantum tunneling in eight modern physics
courses over a five-semester period. Five of these courses
were for engineering majors and three were for physics ma-
jors. Four of the engineering major courses were taught us-
ing the transformed curriculum described in Sec. IV. The first
two semesters of the transformed course were taught by the
authors and the next two by another professor in the PER
group.3® The remaining courses in the study were taught in a
traditional manner along the lines of Sec. II, with minimal or
no use of peer instruction, collaborative homework sessions,
focusing on real-world applications, addressing common stu-
dent difficulties, or interactive simulations. Some of these
courses used clickers, but their use was less frequent and
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involved less discussion than in the transformed courses.

The qualitative data we collected consist of observations
of students in lectures and problem-solving sessions, student
responses to essay questions on homework and exams, and
student interviews. Interviews included students participating
in a case study project, interviews on the Quantum Mechan-
ics Conceptual Survey (QMCS),?”* which includes ques-
tions on tunneling,7 and interviews on the Quantum Tunnel-
ing and Wave Packets simulation described in Sec. IV C. The
quantitative data consist of student responses on the QMCS,
homework, and exams.

Observations included approximately 200 lectures (20 on
tunneling) and 50 problem-solving sessions (5 on tunneling).
In lectures, a researcher (S.B.M.) took detailed field notes
during and after class, writing down all questions that stu-
dents asked of the lecturer and summarizing student discus-
sions during clicker questions. The researcher also took field
notes immediately after problem-solving sessions, writing
summaries of her interactions with and observations of stu-
dents working on homework. Undergraduate learning assis-
tants (LAs) who were hired to facilitate student discussion
during lecture and problem-solving sessions also took field
notes, which provided an additional perspective.

The case study interviews involved six students who were
taking the transformed course in Spring 2006. Each of these
students participated in 11 interviews throughout the semes-
ter. Two of the interviews with each of these students (total
of 12 interviews) focused on quantum tunneling. In the first
interview on tunneling, students were asked to go over the
tunneling tutorial that they had already completed in class
and homework. In the second interview, they were asked a
series of questions about what happens to the energy and
probability of tunneling for an electron approaching a barrier
when the height or width of the barrier is changed, culminat-
ing in the question in Fig. 7.

We conducted interviews on the QMCS with 47 students,
including 24 from transformed courses and 23 from tradi-
tional courses. In these interviews, most of which were con-
ducted within two days after the QMCS post-test was given
in class, students were asked to state their answer to each
question and explain their reasoning out loud. Initially the
interviewer intervened only to request that students talk more
or to ask clarifying questions. After students had answered
all questions, the interviewer asked more in-depth follow-up
questions about issues raised in earlier responses and if re-
quested, helped students with the questions they had an-
swered incorrectly.

We conducted simulation interviews with six students:
four from traditional courses and two who had taken the
transformed course the semester before we created the simu-
lation and were serving as LAs in the transformed course in
the subsequent semester. In simulation interviews, there was
an initial period of free exploration, in which students were
asked to play with the simulation and talk out loud with little
interference from the interviewer, followed by a period of
guided exploration, in which the interviewer asked students
to explore aspects of the simulation they had missed or asked
follow-up questions about the concepts involved in the simu-
lation.

All interviewed students were recruited by sending an
email to the entire class and paying volunteers $20/h for their
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FIG. 6. A tunneling question from an early version of the
QMCS. This question was developed to test students understanding
of tunneling wave functions. It has been removed from the QMCS
because interviews suggest that it tests memorization rather than
conceptual understanding.

time. The payment ensured a greater diversity of volunteers
than asking students to volunteer their time. (Some students
stated that they were only there for the money and displayed
little interest in the material.)

While our data include students working on many differ-
ent problems in many different contexts, a large part of it is
based on the questions shown in Figs. 6 and 7. In particular,
the question in Fig. 7 was asked as a multiple choice ques-
tion in some versions of the QMCS, which was given in
class as an ungraded practice test before the final, as an essay
question in which students were asked to “explain your rea-
soning” on the final exam one semester, as a multiple choice
question on the final exam another semester, and in inter-
views for the QMCS and case study project.

By drawing on multiple forms of data, we have been able
to track similar responses among many courses as well as
looking at changes in student thinking as further transforma-
tions were introduced into the curriculum. When we noted
interesting patterns in observations or interviews, we looked
for corroborating evidence by reviewing videos and tran-
scripts of interviews, field notes, and responses to online
participation questions, homework, and exams.

VI. RESULTS

Even in our transformed courses, we saw some evidence
of most of the difficulties reported in previous research on
student understanding of quantum tunneling. However, many
of the previously reported difficulties were less prevalent or
appeared in more subtle forms than we saw in traditional
courses. We also saw many issues in our transformed courses
that have not been previously reported.

A. Difficulties drawing wave functions

In a final exam question in the transformed course in
Spring 2006, we asked students to draw the real part of the
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Suppose that in the experiment described in the previous question, you would like to
decrease the speed of the electron coming out on the right side. Which of the following
changes to the experimental set-up would decrease this speed?

A. Increase the width w of the gap:
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A
E— becomes: E—
Up>E Uy
U<E
W T » X — W X

D. Decrease the potential energy to the right of the gap:

U(x) U(x)
A
E—> |IU0>E becomes: E— I;O
w | x w | 4y >
A < > L

E. More than one of the changes above would decrease the speed of the electron.

FIG. 7. A tunneling question from an early version of the
QMCS. This question was developed to explore the belief that en-
ergy is lost in tunneling. It has been removed from the QMCS
because interviews suggest that responses from students in trans-
formed courses are not necessarily indicative of whether students
think energy is lost in tunneling.

wave function for an electron tunneling through an air gap in
a wire (a square barrier of potential energy) and explain their
drawings. We were looking for a drawing like that shown in
Fig. 6(A) or a similar drawing of a tunneling wave packet.
On this question, 18% of students drew the wave function
with an offset as in Fig. 2(a) or 6(D) and 23% drew a shorter
wavelength on the right than on the left as in Fig. 2(b). While
these difficulties, both of which have been reported on ex-
tensively in the previous literature, were fairly prevalent, we
noticed in exam responses and in interviews with students in
both traditional and transformed courses that the reasons for
these two difficulties were not particularly deep. Students
never volunteered any reasons for drawing the wave function
in either of these ways, and when asked by interviewers to
explain their drawings, they usually responded that they just
remembered it looking like this. Figure 6 shows a QMCS
question designed to test students’ understanding of the wave
function for a plane wave tunneling through a square barrier.
We note that the percentage of students who answered this
question correctly varied from semester to semester much
more than other questions, and in interviews, students rarely
gave any reasoning for either correct or incorrect answers but
simply picked the picture that looked the most familiar or
stated that they did not remember these pictures. In general,
students’ explanations of their answers to this question indi-
cated that they were not reasoning through it at all but scan-
ning for the picture that most closely matched their memo-
ries of figures from the lecture or textbook. Because this
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TABLE I. Reasons students may think that energy is lost in
tunneling. Reasons 1-3 are discussed in previous literature and rea-
sons 4—6 are new to the current study.

Reasons students may think energy is lost in tunneling

(1) Treating energy and wave function interchangeably

(2) Invoking dissipation

(3) Using the energy-amplitude relation for electromagnetic waves
(4) Confusion over how electron regains energy when it re-enters
wire

(5) Treating total energy as a local characteristic of wave function
(6) Difficulty connecting energy to wave-function representation

question appears to test memory, rather than conceptual un-
derstanding, it has been removed from the QMCS.

B. Energy loss: Another perspective

In the transformed courses, because there was such a
heavy emphasis on energy conservation, students quickly
learned to say that energy is not lost in tunneling. When we
asked them directly on exams whether “the total energy of an
electron after it tunnels through a potential barrier is (a)
greater than, (b) equal to, or (c) less than its energy before
tunneling,” between 70% and 93% answered correctly that it
is equal. In homework, when students were asked “does an
electron lose energy when it tunnels?” between 95% and
96% answered correctly that it does not and gave clear ex-
planations of their reasoning, invoking the conservation of
energy and the lack of dissipation. When the question in Fig.
7 was asked as an essay question on the final exam, only 7%
of all students (31% of those who answered incorrectly) ex-
plicitly said that energy is lost in tunneling in their response,
although a much larger percentage gave answers that implied
energy loss.

In spite of students’ correct answers on direct questions,
energy loss in tunneling continued to be an issue. After the
instruction described in Sec. IV, students asked repeatedly in
lecture, problem-solving sessions, and online participation
homework “why is the total energy the same after tunnel-
ing?” (These were often the same students who had given
correct and clear answers to this question in earlier home-
work.) In questions about tunneling that did not directly ask
about energy loss, some students continued to give answers
that implied that energy is indeed lost in tunneling. Table I
lists all the reasons we have seen students give for energy
loss in interviews and in responses to an essay question on an
exam. As discussed in Sec. III, reasons 1 and 2 are the stan-
dard reasons that have been given in most previous literature
and reason 3 was postulated in a previous study. Reasons
4-6 are new to the current study.

In this section, we will outline the general results from the
question shown in Fig. 7 and will then discuss the evidence
for each of the reasons given for energy loss in Table I from
interviews, observations, and student responses to an essay
version of the question in Fig. 7 asked on a final exam.
Unless otherwise noted, all interview quotes are from stu-
dents in transformed courses.
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TABLE II. Percentage of students who selected each answer to the question shown in Fig. 7 in various

courses. N is the number of students.

Course A B C D E N
Traditional Engineering Spring 2005 (QMCS) 18 10 24 15 33 68
Traditional Physics Spring 2005 (QMCS) 19 11 38 9 23 64
Traditional Physics Fall 2005 (QMCS) 12 11 38 15 24 54
Traditional Physics Fall 2006 (QMCS) 13 13 38 9 26 54
Transformed Engineering Fall 2005 (QMCS) 12 10 37 5 37 162
Transformed Engineering Fall 2006 (QMCS) 20 6 41 8 25 73
Transformed Engineering Spring 2007 (QMCS) 13 10 40 7 31 120
Transformed Engineering Spring 2006 (exam 2 3 58 5 31 177
essay)

Transformed Engineering Spring 2007 (exam 1 2 90 6 0 147

multiple choice, after QMCS)

The question in Fig. 7 was originally developed to test
whether students think that energy is lost in tunneling. In
order to answer this question correctly, students must recog-
nize that total energy is constant and determine that since
potential and kinetic add up to total energy, the way to de-
crease the kinetic energy on the right must be to increase the
potential energy, as in the correct answer, C. The distracters
A and B are very effective at eliciting the belief that energy
is lost in tunneling, since students who think that energy is
lost will usually think that more energy is lost in one or both
of these cases. In interviews with students in traditional mod-
ern physics courses, we found that students’ answers to this
question were good indicators of whether they believed that
energy is lost in tunneling; all students who did not choose
the correct answer expressed the belief that energy is lost in
tunneling.”

However, in later interviews with students in our trans-
formed modern physics class, we found that even students
who explicitly said that energy is not lost in tunneling some-
times chose incorrect answers, often for very subtle reasons.
(Occasionally, students even argued for answers A and B by
saying that no electrons will tunnel if you make the barrier
sufficiently high or wide and if no electrons are coming out,
you could say the speed is zero. While one could argue that
these students were using questionable logic, their incorrect
answers were not due to a misunderstanding of the physics.)
We have also found that this question is much more difficult
than other questions eliciting the idea of energy loss, with
only 37%-58% of students answering correctly the first time
they see it. Students’ ability to answer this question also
varies greatly depending on context. As shown in Table II,
when the question was asked on the QMCS, an ungraded
multiple choice conceptual survey that was used as a review
for the final exam, 37%—-41% of students in the transformed
course for engineering majors answered correctly (higher
than the scores in the traditional course for engineering ma-
jors and comparable to the scores in the traditional course for
physics majors). However, when we gave it instead as an
essay question on the final exam, asking students to explain
your reasoning, 58% answered correctly. We hypothesize
that the process of explaining their reasoning led more stu-

dents to figure out the correct answer; in interviews, we saw
that many students initially answered with a variety of incor-
rect reasoning but in the process of attempting to explain
their reasoning to the interviewer eventually came to the cor-
rect explanation. When we gave it as a multiple choice ques-
tion on a final exam after asking it on the QMCS and review-
ing it in class, so that students were already familiar with it,
90% answered correctly.

Because of the subtlety of the reasons students give for
their answers and the context dependence of the scores, we
no longer recommend the use of this question in multiple
choice format as a diagnostic. However, we have found that
it is extremely valuable for eliciting student thinking when
used in an interview setting or as an essay question on ex-
ams.

1. Reasons 1 and 2: Treating energy and wave function
interchangeably and invoking dissipation

In the transformed courses, the two standard reasons for
energy loss did arise but were relatively infrequent. For ex-
ample, when the question in Fig. 7 was asked as an essay
question on the final exam, only 10% of all students (43% of
those who answered incorrectly) related the decrease in
speed to the exponential decay of the wave function, imply-
ing that they were treating energy and wave function inter-
changeably (reason 1) and only 16% of all students (67% of
those who answered incorrectly) said that it requires more
energy, or is harder, to tunnel through a wider or higher
barrier, implying dissipation (reason 2).

Ulx)

FIG. 8. A student drawing of a wave function on top of a
potential-energy graph.
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Further, when students in interviews or problem-solving
sessions seemed to have the common problems of treating
energy and wave function interchangeably or thinking of dis-
sipation, they usually corrected themselves without interven-
tion from the interviewer or instructor. An example can be
seen in an interview with a student who is struggling to
answer the question in Fig. 7. The student begins with a
typical response in which she interprets the height of the
wave function as the kinetic energy:

It’s either one of these two [A or B]. I'm just trying to
think about it. T think it’s this one right here [B] be-
cause it would—the wave function would come up
here and then it would drop down a little bit but then it
would keep going, and the distance between it and the
potential energy would be the kinetic energy, kind
of.... Well, no, this is—scratch that. We’ll take it out.
Because the energy has to be the same on both sides...

After she answered the question correctly, the interviewer
asked her to explain what she was thinking before. She said:

Yeah. Um, I was thinking [pause] that a lot of times
when I see these, I'm thinking of the wave function on
top of it [draws wave function on top of energy
graph—see Fig. 8], and I’'m thinking of it dropping
down a certain-dropping down, like, a certain rate de-
pending on the difference between the energy—the
electron’s energy and the potential energy or the width.
So I think about it that way. So I was thinking, once
it—if it’s coming up here and it drops down a little bit,
it’s gonna come up here on this side. And I’'m kind of
thinking, maybe, like, the amplitude of the wave func-
tion had to do with energy and so its distance from this
potential was the kinetic energy or kind of could rep-
resent the kinetic energy. But then I wasn’t too sure
about that because I realized I was kind of thinking of
the wave function instead of the energy so I had to,
like, re-evaluate how I was thinking about it even
though it kind of still works the same.

It is interesting that this student instinctively thought of
drawing the wave function on top of the energy graph, al-
though this semester, aside from in the question shown in
Fig. 3, there were no pictures of a wave function on top of an
energy graph in the lectures, textbook, or simulations. This
example illustrates that eliminating such pictures, while
helpful, is not sufficient to address the problem of students
treating energy and wave function interchangeably.

Thus, in interviews, students in the transformed course
were usually able to let go of the typical ideas that lead to
belief in energy loss. However, these students often did say
in interviews that energy is lost in tunneling. There are four
further reasons they gave, all of which are distinct from the
reasons most often given in the literature.

2. Reason 3: Using energy-amplitude relation for electromagnetic
waves

In the transformed courses, the relationship between am-
plitude and energy for electromagnetic waves was very
heavily emphasized in the section on the photoelectric effect
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in lecture, homework, and exams. Occasionally in interviews
and observations of students in the transformed courses, but
never in interviews with students in the traditional courses,
students pointed out this relationship and asked why it was
not the same for matter waves or assumed that it was the
same. For example, in one interview, after a student had
drawn a wave function with the same amplitude on both
sides of the barrier “because the kinetic energy’s the same,
the total energy’s the same, the potential energy’s the same
on each side,” he corrected himself and explained “I was
thinking more of the electromagnetic waves when I was
thinking about that.”

This reason was not very common and was only observed
in relatively strong students. We mention it here mainly be-
cause it has been discussed in previous research.’

3. Reason 4: Confusion over how electron regains energy when
it re-enters wire

One reason that some students give for energy being lost
in tunneling appears to be associated with the particular
physical example we use in class, that is, an electron travel-
ing through a wire and tunneling through an air gap. Students
can easily grasp the physical mechanism by which kinetic
energy is lost when it goes from the first wire into the air
gap. Earlier in the course, in the context of the photoelectric
effect, we discuss the energy required to overcome the work
function of the metal. While the photoelectric effect example
is different from tunneling in that the kinetic energy of the
electron does not become negative, it is similar in that kinetic
energy is transferred to potential energy when an electron
goes from one medium to another. Most students seem able
to apply the concept of energy transfer from the photoelectric
effect to tunneling, recognizing that the electron loses kinetic
energy when it escapes the wire into the air gap. However,
students do not understand the mechanism by which the elec-
tron regains its kinetic energy when it goes into the second
wire. Therefore, while they know that energy is conserved,
they express confusion over how the electron “gets back” the
energy that went into overcoming the work function.

For example, one student, who was sufficiently bothered
by this issue that she had asked her friends about it, said in
an interview:

The kinetic energy starts at £ and then it drops down,
takes energy to get up, and then it jumps back up to E.
I talked to my friends. Why the hell they don’t under-
stand that exactly.

In another interview the following week, the same student
brought up the issue again:

Yeah, because it takes energy to get out of metal, the
work function. And it takes the amount of the potential
energy—the barrier, this is the barrier’s, so it uses that
energy up and then it has a much slower—so it’s going
much slower. And then once it hits the other metal,
hey, it’s going fast again.... It’s just weird, a little bit.
You’d think it would slow down, but it is because the
potential drops to zero again and conservation of en-
ergy, all the energy goes to kinetic. But it is a weird
idea for me to think about.
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We have found that presenting students with a gravita-
tional analogy of a ball rolling over a hill, in which the
kinetic energy is lost as the ball rolls up the hill and regained
as the ball rolls down the hill, helps students resolve this
confusion. In every case we have seen, the main problem is
that students are not able to apply the concept of converting
potential energy to kinetic energy to this novel situation.
However, they are quite comfortable with this concept in the
context of gravitational potential energy, and once they are
reminded of this familiar situation, they can apply the con-
cept to the new situation. For example, after the interviewer
suggested the analogy and asked why the ball regains its
kinetic energy, the student quoted above said:

Because the gravitational force supplies it with energy.
Going back down, like, the potential increases as you
get farther and farther from the ground. When you’re
lifting something up, it gives it potential energy. And
that’s what—and as the ball rolls back down, it gains
kinetic energy because it’s going back down. So the
force gives it energy, I guess. So maybe I’'m just con-
fused on what’s the—hmm. [Pause] OK. Because I un-
derstand this really well. [Points to picture of ball on
hill] But why the electron is or what the electron’s
doing and what—what’s the force here that is giving it
the energy. Here gravity and potential, I understand
that. Maybe here I don’t quite understand what’s giv-
ing it back its—like, what’s the force involved that’s
giving it back its energy, in a sense.... Yeah, I guess
that’s maybe my confusion. But when you look at it
that way, it’s really easy to understand. This is like a
hill. It comes back down.

It is worth noting that this student traced her confusion
back to not knowing what the force was. In quantum me-
chanics instruction, we typically ignore forces altogether and
speak only in terms of potentials.

Some researchers are reluctant to use gravitational analo-
gies in teaching quantum tunneling for fear that they may
lead to the idea that tunneling involves a particle traveling
through a physical barrier like a hill and exacerbate the dif-
ficulty of thinking that energy is lost due to dissipation.
However, we have seen no evidence of such a link. Further,
as Brookes and EtkinaZ’ pointed out, the gravitational anal-
ogy is already inherent in the language we use, as seen in
phrases such as potential step and potential barrier, and even
in the word “tunneling.” Even if we were careful to avoid
such language, there is evidence that students have a ten-
dency to interpret graphs too literally and think that higher
on a graph means higher in space, regardless of context.’
The gravitational analogy is an important aspect of the expert
model of tunneling. Therefore, we argue that it is preferable
to address the strengths and limitations of the gravitational
analogy directly rather than to avoid its use.

Another possible concern about the gravitational analogy
is that the ball must have enough energy to get over the hill,
and thus it is not actually tunneling. However, confusion
over how the electron gets back its kinetic energy arose both
in cases with the total energy less than the potential energy of
the gap, as in tunneling, and in cases with the total energy
greater than the potential energy of the gap, as in the first
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FIG. 9. A reproduction of a graph drawn by a student to repre-
sent the potential (solid line) and total (dotted lines) energies of a
particle tunneling through a barrier. This student said the particle
was losing energy because only a part of it was transmitted.

example in the tunneling tutorial. Thus, the difficulty does
not seem to be particular to the case of the total energy being
less than the potential energy of the gap, and we have not
seen any problems as a result of the gravitational analogy not
corresponding to tunneling.

Out of six students who were interviewed extensively on
the relationship between the energy and wave function in
tunneling, two exhibited this difficulty, and it was observed
in students working on homework in problem-solving ses-
sions. There is also some indirect evidence for this difficulty
in some of the responses to the essay version of the exam
question shown in Fig. 7: 11% of all students (48% of those
who answered incorrectly) argued for option A and/or B by
pointing out that the electron would be slower in the gap in
these cases than in the original case. While it is possible that
some of these students simply misread the question and
thought it was asking how to slow the electron inside the
gap, rather than to the right of the gap, it is clear from at least
some of these responses that this is not the case. For ex-
ample, “want to decrease its KE coming out. We can only do
this by increasing the PE in order to borrow more KE from
the system” and “a greater PE means a decrease in KE the e~
will have once it merges on right side. Both B & C would
cause this result.” These responses imply that students cor-
rectly understood that increasing potential energy reduces ki-
netic energy but did not recognize that the kinetic energy
would increase again when the potential energy goes back
down.

4. Reason 5: Treating total energy as a local characteristic of
wave function

Another reason that students give for energy loss is that,
since only part of the wave function is transmitted, only part
of the energy is transmitted, with the rest being reflected. For
example, when a student working on homework during a
problem-solving session was asked to draw the potential and
total energy of a tunneling electron, he drew a picture like
the one shown in Fig. 9. He explained that the dotted line on
the top left was the total energy of the incoming particle,
which was then split into the reflected part (bottom left) and
transmitted part (right).

Another student, who was attempting to answer the ques-
tion in Fig. 7 in an interview, after explicitly stating that
energy is not lost in tunneling, used a similar argument in an
interview to justify her intuitive belief that the energy must
be less on the right side of the barrier:

020103-10



DEEPER LOOK AT STUDENT LEARNING OF QUANTUM...

Interviewer: ... does that mean that the total energy is
going down when it goes through the barrier?

Student: The total energy is constant.

I: Ah! OK, so what energy is decreasing then, if it’s not
the total energy?

S: The energy—the energy—man—Well, OK. What
I’'m saying, but what I’m saying with caution—is—the
energy of the wave function on this side—is decreas-
ing. I want to make the energy of the wave function on
this side decrease. But I'm also wary about that
because—"the energy of the wave function on this
side”? You know, the wave function is a wave func-
tion, and it has like parts to it, but it doesn’t have
like—No, it does—You can have a wave function like
that... and it has a different energy here than it has
here.

I: Different total energy?

S: No, total energy is of the entire wave function. What
is total energy then? Is it this plus this plus this? Yikes!
I need to study this for the final.

This difficulty appears to be caused by a lack of under-
standing of the fact that the total energy is a nonlocal prop-
erty of the entire particle rather than a local function of po-
sition. This fact is not stressed in our class, nor in any class
we know of, but perhaps it should be.

We note that in both examples discussed above, the prob-
lem involved a single electron tunneling, not an ensemble,
and the students described it as such. Because our course did
not discuss probability current, it is unlikely that this diffi-
culty was due to students thinking of probability current or
ensembles of electrons splitting. We further note that in both
cases, students had been introduced to tunneling in terms of
both wave packets and plane waves, so the difficulty cannot
be attributed directly to either of these approaches.

While this difficulty has only been observed with the two
students discussed above, these two examples are from
courses in different semesters, taught by different instructors
using different textbooks. Further, the problems they were
working on were quite different and the two students had
very different personalities.

5. Reason 6: Difficulty connecting energy to wave-function
representation

Another reason that students give for energy loss in tun-
neling is related to the confusion between energy and wave
function seen in reason 1, but it is more subtle. In several
interviews, we have observed students who explicitly state
that the energy is not the same as the wave function but that
the two must be related somehow, so the exponential decay
of the amplitude must imply a loss of energy. These students
are careful to distinguish between energy and wave function
and do not use them interchangeably but believe that there
must be some relationship between them. While reason 1 is
simply a failure to distinguish between the two quantities,
reason 6 is a search for a simple causal relationship that does
not exist.
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For example, when asked whether the probability of tun-
neling would change if the width of the barrier increased, a
student said some things made him think that it would de-
crease and other things made him think that it would not
change. When the interviewer asked what made him think it
would not change, he said:

Well, it would be diagrams like this. [Points to energy
graph] One thing that the text doesn’t really have—
doesn’t focus nearly as much as you guys do in the
course, and I don’t know if that’s good or bad, are
these diagrams. You guys use these diagrams a lot,
which is great. The text doesn’t so much, it sort of
approaches it in a little different way. So if we are to
evaluate these diagrams, put our total energy line in,
evaluate how that corresponds with our potential en-
ergy, you—it sort of—[pause] maybe this forces me to
think too much about energies. For example—I mean,
that’s more classical physics, is it not? If the particle
has sufficient energy to get to the other side. Quan-
tum’s a whole other story where we’re not talking
about so much energies. We are, but we’re also talking
about probabilities, correct? So there’s sort of two
ways to think about this and maybe that’s why I'm a
little confused still, at this late date.

Another student, when asked whether the probability of
tunneling would change if the initial energy of the incoming
particle decreased, said:

The amplitude shouldn’t be affected by the energy
other than its exposition. Yeah. I think. And then—I
believe it’s still gonna do the exponential decay.
[Draws] OK. So now—OK, so, hmm, probability of
the electron tunneling through the barrier. The differ-
ence between the total energy and the potential energy
of the gap is larger now, so I would say—I feel like,
um, that would mean that it has less of an opportunity,
less chance, less probability of it tunneling through.
What am I trying to say here? When an electron has to
convert a certain amount of kinetic energy to come out
of a wire to potential energy, and in this case it has to
convert this much [points] or this much will be poten-
tial energy, that difference there, which is more than
the original case. So [pause] I don’t know. Um, I'm not
quite figuring out how to connect it. But the larger
difference between the total energy and the potential
energy of the gap I think has something to do with the
probability of the electron tunneling through or not,
compared to the first.

This difficulty reveals why emphasizing that the wave
function and energy are not the same thing is not sufficient to
address the student belief that energy is lost in tunneling.
Even if students realize that energy and wave function are
not literally the same thing, they struggle to make connec-
tions between these two quantities that are emphasized in the
study of quantum mechanics. One quantity, the wave func-
tion, is wholly unfamiliar to students, and the other quantity,
energy, is treated in an unfamiliar way: graphed as a function
of position but applied to a delocalized object.

Out of six students who were interviewed extensively on
the relationship between the energy and wave function in
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tunneling, four exhibited some form of this difficulty. It was
also observed in students working on homework in problem-
solving sessions. It also came up in class when students were
working through the tunneling tutorial. Although the tutorial
specifically said not to worry about the relative magnitudes
when sketching wave functions, many students asked how to
figure out the amplitude from the energy and expressed frus-
tration that they could not find a connection.

Unlike the previous three difficulties, this was also ob-
served in students in the traditional courses. For example,
one student from a traditional course, when asked how the
wave function is related to the energy, replied, “I can’t re-
member. I wish I did. But I can swear, well not swear, but I
can almost remember my professor saying that the energy is
encoded in the wave function, somehow, I can’t remember
exactly now.”

C. Giving potential energy a physical context

One conclusion of our study is that understanding the
context of potential-energy graphs is a difficult task for stu-
dents, and a great deal of instruction is needed to address this
issue. In a previous study’ we reported on interviews with
students in the traditional modern physics for engineering
majors course in Spring 2005. Students in this course had no
idea what the potential-energy graphs mean. In the trans-
formed courses, we observed that students still struggled
with the basic meaning of potential-energy graphs, but as we
refined our curriculum, their questions about these graphs
became more sophisticated, illustrating a struggle to relate
the graphs to physical reality in a deep and meaningful way.
The extent of questioning from students in the transformed
course indicates what a difficult subject this is and how
hopeless it is to expect students to build meaningful models
of these graphs if the course does not explicitly help them do
sO.

In Fall 2005, the first semester of the transformed course,
even after focusing on the physical context of potential and
explicitly addressing possible confusion arising from sloppy
language in the text using potential and potential energy in-
terchangeably, students expressed a great deal of confusion
over the meaning of potential energy. In weekly online extra
credit, we asked students to submit any unanswered ques-
tions they had about the course material. Here is a sample of
these questions regarding potential energy:

(i) “I get very confused by exactly what an infinite well is.
What is it, how is it infinite? do we just make it that way?”

(ii) “I have trouble understanding what the potential is
when we are looking at models of an electron in a wire, free
space, finite square well, infinite square well. I am sort of
getting this idea of it being similar to a work function in that
once the potential (V) is less than the potential energy, the
electron is out of the wire. I can usually follow the math/calc
that follows the examples okay, but the overall concept of
this potential (V) still confuses me, and so I still don’t have a
firm grasp of [what] the square well models mean/represent/
whatever.”

(iii) “I cant find a general description of an infinite well, i
understand what it does but not what it is or where its used.”
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FIG. 10. (Color) An illustration of how to build up a square well
by adding up the Coulomb wells of individual atoms (taken from
slides used in lecture in Spring 2006, Fall 2006, and Spring 2007).
This is a simplified sketch in which the discontinuities of the po-
tential at the ion cores are smoothed over and irrelevant details such
as the zero of potential are not labeled.

(iv) “Voltage is used when we talk about electromagnetic
forces, like the coulomb force. What I’'m confused about is
that we used a voltage well to show the strong force in effect.
Is it accurate to show the strong force as a very deep voltage
well?”

The first three students were struggling to make sense of
what the potential-energy diagram for an infinite square well
means and how it relates to a real physical system. The last
student thought that the symbol V that we used for potential
energy represented voltage, although we had pointed out re-
peatedly in class that it did not.

Further evidence for student confusion about potential en-
ergy can be seen in our observations of students’ responses to
the first question of our tunneling tutorial, which asked stu-
dents to draw the potential energy as a function of position
for an electron traveling through a long copper wire and
tunneling through an air gap [see Fig. 4(b)]. At this point in
the course, students had worked extensively with a square
well as a representation of the potential energy of an electron
in a wire but had not previously seen this example of a wire
with an air gap. We expected them to use their knowledge of
the potential energy of individual wires to draw a square
barrier for this new situation. While many students did draw
the correct potential energy, we observed that many students
got it backward, drawing a well instead of a barrier. A com-
mon student explanation for the well was that the air gap was
a “hole” and therefore should be represented by a well. This
response betrayed a lack of understanding of why a well
represents the potential energy of the wire. In subsequent
semesters, we added instruction before the tutorial on how to
build up a square well by superimposing the Coulomb po-
tentials of all the individual atoms that make up a wire. As
illustrated in Fig. 10, adding the potentials of all the ion
cores that make up a wire produces a potential similar to a
square well but with a dip at each atom. Since the electrons
are mobile and attracted to these dips, adding in the poten-
tials of the electrons tends to smooth out the potential to
make it even more like a square well. After this instruction,
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anecdotal observations indicated that fewer students drew a
well instead of a barrier in the tutorial. In later semesters, we
also demonstrated this concept with the Quantum Bound
States PhET simulation.

Students still struggled to relate the potential-energy
graph to reality to the extent that some viewed the graph and
the electron in the wire as describing two different things.
Here is an example from an interview in which a student was
trying to figure out how the width of the barrier affects the
probability of tunneling:

But I don’t know if it explained as well as it needed to
or if I just didn’t understand as well as I needed to
whether width [holds out thumb and forefinger to indi-
cate width of space between them] meant actual real
classical physics width [holds hands out to indicate
width of space between them] or more theoretical
width [points to potential barrier on sheet], which is
like the—which might be more represented here.

Another example of a student struggling with potential-
energy graphs can be seen in a student who asked a question
after class that revealed that he was misinterpreting the pic-
tures in Fig. 4 to mean that the wire was sitting on top of the
potential energy.

Students also worried about the applicability, limitations,
and relevance of the model of the square well for an electron
in a wire. For example, students frequently asked about col-
lisions with the atoms in the wire and whether these would
constitute measurements of the electron and localize it. In
discussing tunneling, they struggled with the concept of in-
finitely long wires and frequently discussed the reflection of
the electron when it reached the end of the wire. While work-
ing through the tunneling tutorial, one student asked why the
electron would flow from one wire to the other if there was
no potential difference between the two wires. The answer to
this question is that you would not have a net flow of elec-
trons from left to right without a potential difference but that
electrons would constantly flow back and forth due to ther-
mal energy. This student also asked whether you could really
measure a single electron flowing through a wire and why
we were studying it if you could not. He was satisfied only
after a long explanation of how you could predict net current
by adding up the effects of single electrons. This example
demonstrates that even with a physical context, a square bar-
rier with an equal potential energy on either side (the proto-
typical system used in the standard presentation of tunneling)
is still artificial because in reality a net current does not flow
without a voltage between the two sides of the barrier. These
questions further demonstrate that physical context is impor-
tant not just for giving the material relevance but for concep-
tual understanding of the material itself.

Student difficulties with potential energy can also be seen
in the questions they asked during the section on the appli-
cations of tunneling, which included alpha decay, scanning
tunneling microscopes, and getting shocked when you rub
your foot on the carpet and approach a metal doorknob. We
asked students to figure out the potential-energy graphs for
each of these applications, shown in Fig. 11, using a series of
concept questions in lecture as well as more detailed ques-
tions in homework. Determining each of these potential-
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FIG. 11. (Color) Potential-energy graphs for (a) an alpha par-
ticle undergoing alpha decay, (b) an electron in a scanning tunneling
microscope, and (c) an electron in your finger when you get
shocked by a doorknob. Determining how to draw each of these
graphs requires many subtle approximations.

energy graphs requires many subtle approximations, which
may not be apparent until one is faced with a barrage of
student questions. For example, to determine the potential-
energy graph for alpha decay, one must approximate the
strong force as a flat potential throughout the nucleus, al-
though there is no model in nuclear physics that predicts
such a potential, one must recognize that the strong force
dominates in the nucleus and the Coulomb force dominates
outside, and one must treat the alpha particle that is going to
be ejected as having an independent existence and a well-
defined energy prior to decay. Gurney and Condon*’ explic-
itly discussed all of these approximations in their 1929 paper
explaining radioactivity on the basis of tunneling. Yet most
textbooks simply give such graphs without explanation.

The following questions from students illustrate that our
students struggle with these approximations:

(i) “How do the Coulomb force and the strong force relate
to each other?”

(i) “How do you find the distance where the strong force
takes over?”

(iii) “Is the potential really square like that?”

(iv) “Do alpha particles already exist in the nucleus or are
they created upon radioactive decay?”

In the first two questions, students are struggling with the
assumption that the strong nuclear force dominates in the
nucleus and the Coulomb force dominates outside of it. The
last two questions illustrate the simplifications required to
come up with a solvable model.

Similar questions illustrated students’ struggles to under-
stand the potential-energy graph for a scanning tunneling mi-
croscope:

(i) “As the electrons tunnel through, isn’t the sample po-
tential energy going to drop?”

(ii) “The quantum tunneling microscope can be used on
any material even though not every material has a “sea” of
electrons? Wouldn’t losing an electron in a crucial covalent
bond break the molecule apart?”

The answer to the first question is that the potential en-
ergy would drop if the sample were not hooked to a voltage
supply to keep the voltage constant. This student missed the
function of the voltage supply, but the question illustrates
that he was thinking carefully about the physical system. He
also recognized that the behavior of the electrons could ac-
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tually change the overall potential energy, a fact which is
never discussed in the standard presentation, where the
potential-energy function is taken as a given. The answer to
the second question is that scanning tunneling microscopes
do not work on insulators, an issue that is never discussed in
modern physics courses, but is the focus of a recent Nature
article.!

In spite of all these difficulties throughout the course,
when we asked students to explain the physical meaning of
the potential-energy graph of a square barrier on a homework
question toward the end of the last two semesters, nearly all
gave clear and correct explanations and related the graphs to
a real physical context. Further, from interviews with 24 stu-
dents in the transformed courses, there was only one case in
which a student treated the potential-energy graph as an ex-
ternal thing unrelated to the potential energy of the electron,
as we saw consistently in interviews with students in a tra-
ditional course in an earlier study.” This case was so excep-
tional, especially because it was a particularly good student
(he received an A in the course), that the interviewer asked
him afterwards if he had done the tunneling tutorial. He said
he had been busy that week and skipped it and jokingly
commented, “In conclusion, that’s a good assignment be-
cause you should listen to this guy try to explain it.”

D. Plane waves

Plane waves cause further barriers to student understand-
ing. While plane waves are mathematically simple, concep-
tually it is quite difficult to imagine a wave that extends
forever in space and time, especially when it is tunneling.
The language we use to describe tunneling is time depen-
dent. For example, we say that a particle approaches a barrier
from the left and then part of it is transmitted and part of it is
reflected. This language is difficult to reconcile with a picture
of a particle that is simultaneously incident, transmitted, and
reflected for all time. The following student quote, from a
homework question asking what questions students still had
about tunneling after instruction, illustrates the kind of con-
fusion created by using plane-wave solutions:

Say you have two finite lengths of wire very close
together. I don’t really see how we assume the electron
is in one wire, get a solution, then use that to determine
psi across the gap and then use that to determine the
probability that the electron is in the other wire. Over
time don’t the probabilities even out (i.e., we have no
clue which wire the electron’s in)?

This student is actually struggling with two common is-
sues for students: confusion over the physical meaning of
plane waves and concern over what happens when the elec-
tron gets to the end of the wire. Many students have trouble
with the idea of wires extending to infinity and talk about the
electron waves reflecting off the end of the wire, interfering
with themselves and creating a big mess. This is physically
accurate, but outside of the realm of standard treatment,
which assumes that wires do not have ends.

In student interviews to test the usability and effectiveness
of the Quantum Tunneling and Wave Packets simulation, we
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saw that students were much more comfortable with the
wave-packet representation than the plane-wave representa-
tion. We conducted interviews with six students, all of whom
had completed either a transformed (2) or traditional (4)
course in modern physics. These students were asked to ex-
plore the simulation and think out loud. The interviews
started with free exploration, followed by questions from the
interviewer about aspects of the simulation that the students
had not explored on their own. All students discovered
plane-wave mode on their own (the simulation starts in
wave-packet mode), but four out of six switched back to
wave-packet mode immediately and the other two only ex-
plored it for a few minutes before switching back. Two stu-
dents switched back without comment, one commented that
the plane wave was “too unrealistic,” one commented that he
did not remember what a plane wave was and was more
familiar with a wave packet, and one commented, “that’s
definitely a visualization I didn’t think of.” Only one student
commented that plane-wave mode made sense. Some stu-
dents did eventually return to plane-wave mode in order to
explore specific features, but all students spent most of the
free exploration time in wave-packet mode and quickly re-
turned to wave-packet mode after answering the interview-
er’s questions about plane-wave mode. One student, after
trying it and switching back without comment, who did not
use plane-wave mode again until the interviewer asked him
to explore it, said he had forgotten about it.

It is possible that these students’ clear preference for wave
packets over plane waves was merely due to the wave-packet
representation being more visually appealing. However, we
note that students were able to use the wave-packet mode
and learn new physics from it, in spite of its complexity.

Because the Quantum Tunneling and Wave Packets simu-
lation provides such a compelling visual representation, it
immediately brings to the surface several troubling issues
regarding plane waves that are swept under the rug in stan-
dard treatments of tunneling because textbooks focus on only
a few special cases in which these issues are not apparent.

According to the standard probability interpretation of the
wave function, the reflection and transmission probabilities
should be given by the area under the reflected and transmit-
ted parts of |¢f2, respectively, divided by the area under the
incident part of |¢f>. Since all these areas are infinite, one
cannot calculate the reflection and transmission probabilities
as one would naively expect. It is quite tempting (and quite
wrong) to assume that the infinite widths simply cancel and
that relative amplitudes should be a good indication of rela-
tive probabilities. However, this is not necessarily the case
for plane waves, and the simulation reveals that there are
even cases in which the amplitude of the transmitted wave is
larger than the amplitude of the incident wave (see Fig. 12).
This is such a surprising result that many experts, when they
first see such a case, think there is a bug in the simulation.

Students often cue off the amplitude of the plane wave as
a measure of probability and draw incorrect conclusions. In
observations of students attempting to calculate reflection
and transmission coefficients during problem-solving ses-
sions, we noticed that many students initially assumed that
they were given by
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FIG. 12. (Color) A case where the amplitude of the transmitted
wave is higher than the amplitude of the incident wave.

R=|B[*/|A]? (1)
and
T=|Cl/|AP, (2)

where A, B, and C are the amplitudes of the incident, re-
flected, and transmitted waves, respectively. These equations
happen to be correct for plane waves tunneling through a
square barrier with the same potential on both sides, since
the particle speeds happen to cancel, but Eq. (2) is wrong for
a step potential or for any other situation in which the poten-
tial is different for the incident and transmitted waves.

Thus, both faculty and students tend to assume that the
amplitude alone is an accurate indicator of probability and
make mistakes as a result. Yet most textbooks quickly gloss
over this issue. Most quantum mechanics textbooks simply
state that the reflection and transmission coefficients for
plane waves are determined by the probability current, with-
out explaining why it is necessary to introduce this concept
here and not elsewhere. (One textbook?* justifies defining R
and T in terms of probability fluxes by saying that it is done
“by accepted convention” in order to ensure that R+7T=1.) In
many modern physics textbooks, this issue is not discussed
at all, and the equation for the transmission coefficient is
simply given either in terms of particle velocities (v) or wave
numbers (k),

=- 3)

(the subscripts i and ¢ denote the incident and transmitted
waves, respectively), with no explanation of where the fac-
tors of k or v come from. Some textbooks simply give Eq.
(2) for the transmission coefficient, with no mention that this
applies only for the special case in which v,=v;.*>**" While
we understand that the authors of these textbooks are at-
tempting to avoid excessive mathematics that would obscure
the basic concept of tunneling, presenting the transmission
coefficient only for this special case leads students to draw
many incorrect conclusions when attempting to extend their
knowledge to other contexts.

We know of only two textbooks that give further justifi-
cation by deriving the probability for a wave packet in the
limit that the width goes to infinity.*®° However, even in
these books, it is not intuitively clear why an infinitely wide
wave packet should lead to a probability proportional to the
particle speed. We recommend an alternative treatment sug-
gested by Lande et al.,”° in which reflection and transmission
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coefficients are derived from wave packets, demonstrating
that the factor of the v results from the fact that the widths of
the reflected and transmitted wave packets are a function of
the speed at which they move in their respective media. This
derivation is more intuitive than the derivation from prob-
ability current both because it relates more easily to the typi-
cal definition of probability as it relates to the amplitude of
the wave function and because wave packets are more physi-
cal than plane waves.

A second problematic issue that is often swept under the
rug is the issue of wave speed vs particle speed. Because the
treatment of waves is being pushed out of the physics cur-
riculum at many institutions, many students do not know the
difference between phase velocity (vg4=w/k) and group ve-
locity (v,=dw/dk). For a Schrodinger wave function, the
phase and group velocity are given by

hk VvV

=—+—, 4

Ve 2m+ﬁk “
hk

o= (5)

While the velocity of a particle corresponds to the group
velocity of its wave function, the only velocity apparent in
the visual representation of a plane wave is the phase veloc-
ity. The distinction causes confusion when the potential en-
ergy changes. Students can see in the simulation that if they
increase the potential energy, the “wave speed” increases,
which seems to contradict their intuition that increasing the
potential energy should decrease the kinetic energy, and
therefore the speed (since KE=E-V). In fact, increasing the
potential energy increases the phase velocity or wave speed
but decreases the group velocity or particle speed. The only
way we know to gain any physical intuition for the group
velocity of a plane wave is again to imagine it as an infinitely
wide wave packet, in which case the group velocity is the
speed at which that wave packet travels.

The distinction between wave speed and particle speed
also causes problems in trying to explain why the probability
is proportional to the current and not simply to the square of
the amplitude of the wave function. As discussed above (see
Fig. 12), the transmitted amplitude can be larger than the
incident amplitude if the transmitted particle speed is
smaller. However, in all such cases, the wave speed is actu-
ally larger, so it appears that the transmitted wave has larger
amplitude and is moving faster, obscuring the correct expla-
nation, that it has a smaller particle speed to compensate for
the larger amplitude.

We point out these issues so that instructors will be aware
of the complexities inherent in discussing plane waves and
consider the advantages of focusing on more realistic wave
packets. We do not have solutions for how to address the
difficulties with plane waves (aside from avoiding plane
waves and focusing on wave packets), and we hope that
other researchers will pursue these questions further.
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FIG. 13. (Color) (a) A representation showing the real and imaginary parts of a wave function and (b) a representation showing the
magnitude and phase of a wave function. In interviews we see that students can make sense of representation (a) but not representation (b).

E. Representations of complex wave functions

Students often have difficulty understanding the meaning
of complex wave functions. This can perhaps best be illus-
trated by the observation that students frequently ask, “What
is the physical meaning of the imaginary part of the wave
function?” but never ask about the physical meaning of the
real part, even though both have the same physical signifi-
cance.

Ambrose! found that some students believe that the wave
function is only “real” in classically allowed regions, so that
the real part is zero inside the barrier. We saw this problem in
one interview.

All of the textbooks used in courses in this study regularly
plotted only the real part of the wave function but referred to
it as “the wave function,” as in Fig. 1. In the QMCS and in
the transformed courses, we always labeled such pictures
explicitly as the real part. However, we found in interviews
that even students in the transformed courses who had seen
explicit discussion of both the real and imaginary parts were
often confused by requests to draw “the real part of the wave
function.” When asked to draw the real part of the wave
function on the exam question discussed at the beginning of
Sec. VI, six students (3%) said that the wave function is only
real inside the barrier and set it to zero everywhere else.

To address these problems, we designed the Quantum
Tunneling and Wave Packets simulation (as well as two other
PhET simulations on quantum wave functions, Quantum
Bound States and Quantum Wave Interference) to include
both the real and imaginary parts on an equal footing [see
Fig. 13(a)] and to include time dependence so that students
could see how the wave function alternates in time between
the real and the imaginary parts. For completeness, we also
included the “phase color” representation used exclusively in
most non-PhET simulations of wave functions, in which a
curve representing the magnitude of the wave function is
filled in with colors representing the phase [Fig. 13(b)].

In interviews with five students on Quantum Wave
Interference,”' one student commented that he did not under-
stand real and imaginary numbers and one student wondered

why the imaginary part did not look different from the real
part until he paused the simulation and could see that they
were out of phase. Aside from these two, whose confusion
stemmed more from their expectations than from the simu-
lation, the students interviewed did not express any confu-
sion over the real and imaginary representations of the wave
function in interviews on Quantum Tunneling and Wave
Packets and Quantum Wave Interference. Several students
also learned important concepts by playing with the real and
imaginary views. For example, students figured out from the
simulation that the real and imaginary parts were 90° out of
phase and that the real and imaginary parts add up to a con-
stant probability density in an energy eigenstate even though
each individual component changes in time.

On the other hand, the phase color representation caused
significant problems for most students. In interviews on
Quantum Wave Interference, three out of five students inter-
viewed explored this view. None of the three made any com-
ments on it on their own aside from one student who said it
hurts his eyes, so the interviewer asked them what it was
showing. One student said it was “some sort of frequency
type of thing” and speculated that teal would constructively
interfere with teal and destructively interfere with the oppo-
site of teal. Another stared at the screen in confusion for over
a minute and then described it as “some sort of representa-
tion of both the real part and the imaginary part” showing
that “pink is areas of high real part and low imaginary part or
something?” Another student was unable to give any expla-
nation. When the same three students were interviewed later
on Quantum Tunneling and Wave Packets, the two who had
given explanations in earlier interviews did not comment on
phase view again. The student who had been unable to give
any explanation remembered that this view had been used in
his quantum course but still could not explain what it meant.
Of three additional students who were interviewed on Quan-
tum Tunneling and Wave Packets but not Quantum Wave
Interference, two expressed frustration over the phase view
and were unable to explain it, and the third, when asked to
explain it, said only that it showed “something about wave-
length.” When given a choice, none of the students spent
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much time in phase mode, returning quickly to real or mag-
nitude mode after answering the interviewer’s questions.

Phase color is still an option in the simulations for instruc-
tors who would like to explicitly teach the use of this repre-
sentation or use activities developed for other simulations.
However, based on our interviews, we do not recommend the
use of the phase color representation with students.

F. “Hard questions”

One striking result of our transformed instruction was the
number of student questions probing the relationship of the
course material to reality, many of which were sufficiently
difficult that most expert physicists could not easily answer
them. Many examples of these questions have already been
discussed in Sec. VI C. Below are some further examples:

(i) What [happens if the electron is spread out] in the wire
and you cut the wire in half?

(ii) How come we don’t count the position in the wire?
How come we only count the energy?

(iii) Wouldn’t there be a charge difference in the wire if it
were more likely to be found in the center?

(iv) If everything’s got to be measured for it to be local-
ized, how come everything’s already localized? I'm not go-
ing around measuring things.

We hypothesize that these questions are a result of the
combination of interactive engagement techniques with a fo-
cus on real-world applications. Our students are constantly
engaged in a struggle to relate the material to reality. We
regard the quantity of such questions as a sign that this
struggle is very difficult. We question whether there is much
learning in courses where students are not asking such ques-
tions.

VII. LESSONS FOR IMPROVING STUDENT LEARNING
OF QUANTUM TUNNELING

Our research demonstrates that a focus on addressing
common student difficulties is helpful, but not sufficient, for
improving student learning of quantum tunneling. By ad-
dressing these difficulties and focusing on relating the mate-
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rial to reality, we have uncovered deeper problems in stu-
dents’ ability to use the basic models of quantum mechanics,
such as wave functions as descriptions of physical objects,
potential-energy graphs as descriptions of the interactions of
those objects with their environments, and total energy as a
delocalized property of an entire wave function that is a
function of position. We have found that real-world examples
are useful not just to help students see the connection to their
lives but also to help them make sense of the models they are
using.

Effective curriculum on quantum tunneling must explic-
itly help students learn to build these models. Two practices
that we have found useful are focusing on how to relate
potential-energy graphs to physical systems and starting with
wave packets rather than plane waves.

There are several further practices that, although we have
not tested them on a large scale, our research suggests would
be valuable. These include (1) tutorials to lead students
through the process of drawing potential-energy graphs for
various physical situations,’? (2) explicit discussion of the
strengths and weaknesses of gravitational analogies, (3) ex-
plicit discussion of the reasons for the focus in quantum
mechanics on an energy representation rather than the force
representation used in introductory physics, and (4) explicit
discussion of why total energy is quantized (for bound par-
ticles) but potential energy is not.
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