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After a brief survey of van der Waals forces, we review a method recently proposed by Eberlein

and Zietal to compute the dispersion van der Waals interaction between a neutral but polarizable

atom and a perfectly conducting surface of arbitrary shape. This method has the advantage of

relating the quantum problem to a corresponding classical one in electrostatics in an enlightening

way so that all one needs is to compute an appropriate Green function. We show how the image

method of electrostatics can be conveniently used together with the Eberlein and Zietal method

(when the image solution is known). We then illustrate this method in some simple but important

cases, including the atom-sphere system. Finally, we present an original result for the van der

Waals force between an atom and a boss hat made of a grounded conducting material. VC 2013

American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4798548]

I. HISTORICAL SURVEY AND MAIN PURPOSES

Intermolecular forces have been studied for approximately
three centuries. Because molecules of a real gas condense
into liquids and freeze into solids, it is natural to expect that
there exist attractive intermolecular forces—a conclusion
that had already been reached by Newton at the end of the
17th century.1 The phenomenon of capillarity—the ability of
a liquid to climb the walls of a tube in opposition to external
forces like gravity—was studied for the first time by Clairaut
who, in 1743, suggested that this phenomenon could be
explained if the forces between the molecules of the liquid
and those of a tube of glass were different from the intermo-
lecular forces between the molecules of the liquid them-
selves.2 This same phenomenon was considered later by
Laplace, in 1805, and by Gauss, in 1830. Many others,
including as Maxwell and Boltzmann, were also involved
with the study of intermolecular forces. A more complete list
of contributors to this subject up to the 20th century can be
found in Israelachvili’s book.1

Following a different approach, van der Waals suggested
in his dissertation in 18733 an equation of state for real gases,
given for one mole of gas by ðPþ a=V2ÞðV � bÞ ¼ RT,
where P, V, and T are, respectively, the pressure, volume,
and absolute temperature of the gas, R is the universal gas
constant, and a and b are two adjustable parameters.
Parameter b was introduced to take into account the finite
volumes of the molecules, while the term a=V2 is related to
the existence of an attractive intermolecular force. These
attractive forces are called van der Waals forces. In fact, we
must distinguish three types of van der Waals forces: the ori-
entation force, the induction force, and the dispersion force,
to be described below.

Orientation forces occur between two molecules with
permanent electric dipoles. Taking a thermal average of the
electrostatic interaction between two randomly oriented
dipoles of moments p1 and p2, Keesom4,5 computed the van
der Waals interaction energy between two polar molecules
in a thermal bath at (absolute) temperature T and obtained

UorðrÞ ¼ �
2p2

1p2
2

3kBTð4p�0Þ2r6
; (1)

for kBT � p1p2=ð4p�0r3Þ, where p1 ¼ jp1j, p2 ¼ jp2j, r is
the distance between the two molecules, and kB is the
Boltzmann constant. The minus sign means that the interac-
tion is attractive. Though there are as many configurations
that give rise to attractive forces as configurations that give
rise to repulsive forces, the Boltzmann factor (e�E=kBT)
favors the lower energies that correspond to “attractive con-
figurations.” Note that as T increases indefinitely all config-
urations become equally available, leading to a vanishing
force.

Induction forces occur between a non-polar but polarizable
molecule and another one that possesses a permanent electric
dipole (or a higher multipole, as an electric quadrupole).
Evidence that non-polar molecules indeed existed led Debye6,7

and others to consider this kind of force. The permanent dipole
of one molecule induces a dipole in the non-polar but polariz-
able one, leading to a behavior similar to the previous dipole-
dipole interaction. If p1 is the magnitude of the dipole moment
of the polar molecule, then the magnitude of the electric field
at the position of the non-polar but polarizable one will be
E1ð2Þ � p1=r3 and the magnitude of the induced dipole
acquired by this molecule will be p2 ¼ a2E1ð2Þ, a2 being its
static polarizability. Apart from a numerical factor, the interac-
tion energy is Uind � �p2E1ð2Þ � �a2p2

1=r6. The induction
force does not disappear at high temperatures because the ori-
entations of dipoles 1 and 2 are not independent. Indeed, the
induced dipole is parallel (for isotropic molecules) to the field
generated by dipole 1 at the position of molecule 2, which
explains the attractive character of the induction van der Waals
interaction.

The above two types of van der Waals forces do not
explain the attraction between two atoms or non-polar mole-
cules, like those of noble gases. The explanation for this kind
of force had to wait for the advent of quantum mechanics.
Due to quantum fluctuations, the charge and current distribu-
tions in an atom fluctuate and, consequently, instantaneous
dipoles exist and give rise to an electromagnetic interaction.
These fluctuations are ultimately related to the Heisenberg
uncertainty principle. In 1930, Eisenschitz and London8 and
London9 considered the interaction between two hydrogen
atoms in detail. After using a simple perturbative method,
they related the interaction potential between the atoms
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directly to the atomic polarizability of the hydrogen.
Because the dynamical polarizability aðxÞ is related to the
permittivity �ðxÞ, these forces were called by London disper-
sion van der Waals forces.9 The dispersion interaction
energy between two atoms can be written as9

UdispðrÞ ¼ �
3

4

�hx0a2
0

ð4p�0Þ2r6
; (2)

where x0 is the dominant transition frequency for the inter-
action and a0 is the static polarizability of the atoms. A quan-
tum mechanical derivation of London’s result (2) can be
found in standard textbooks.10,11

Experiments with colloids performed at the Phillips labora-
tories in the first half of the 1940s by Verwey and Overbeek
disagreed with London’s prediction.12 These experiments
showed that the dispersion interaction between two atoms falls
for large distances more rapidly than 1=r6. Further, Overbeek
conjectured that such a change in the force law was due to re-
tardation effects of the electromagnetic interaction. These
effects become important as the time required for light to
propagate from one atom to the other is comparable to the
characteristic times of the atoms, namely, 1=xmn, where xmn

are the allowed atomic transition frequencies. Assuming there
is a dominant transition frequency, say x0, retardation effects
become relevant for r=c � 1=x0. We distinguish two regimes
for dispersion interactions: the non-retarded or short distance
regime, and the (asymptotically) retarded or large distance re-
gime. The latter is valid for r � k0 while the former is valid
for a0 � r � k0, with k0 being the dominant transition wave-
length and a0 being the Bohr radius (condition a0 � r avoids
the overlapping of the electronic clouds of the two atoms).
The influence of retardation effects on the London-van der
Waals forces was first reported by Casimir and Polder in the
late 1940s.13,14 After a fourth-order perturbative calculation in
QED, they showed that, for r � k0, the dispersion interaction
energy between two atoms is

UretðrÞ ¼ �
23�hc

4p
a1a2

ð4p�0Þ2r7
; (3)

where a1 and a2 are the static polarizabilities of atoms 1 and 2,
respectively. Note the change in the power law 1=r6 to 1=r7.

In contrast to the Coulomb interaction, which obeys the
superposition principle, van der Waals interactions are not pair-
wise additive, as first noticed by Axilrod and Teller.15 This fact
must be taken into account in the computation of the van der
Waals force between an atom and a macroscopic body (or
between two macroscopic bodies). A pairwise integration with
London or Casimir and Polder forces would be justified only
for rarefied bodies. Non-additivity effects on the energy of a
system may be positive or negative and are usually small
(�20%), but they can be very important, as in the way the
atoms of rare gases are arranged in solids.1 For more details on
the non-additivity of dispersion forces see the textbooks of
Margenau and Kestner,2 Langbein,16 and Milonni17 (see Ref.
18 for a simple explanation). Calculations of the dispersion van
der Waals interaction between two atoms at any separation can
be found in the pedagogical paper by Holstein19 and in some
textbooks such as those by Craig and Thirunamachandran20

and by Salam.21

Though we shall not discuss any experiment on dispersion
forces between atoms and macroscopic surfaces, we shall

mention a few of them. In 1993, a remarkable experiment
was performed by Sukenik et al.,22 in which for the first time
the change in the power law between retarded and non-
retarded regimes was observed directly with atoms. In 1996,
Landragin et al.23 measured the van der Waals force in an
atomic mirror based on evanescent waves. In 2001, quantum
reflection was used to measure dispersion forces by
Shimizu.24 A short but valuable description of these experi-
ments can be found in the nice paper by Dalibard.25

Dispersion forces appear not only in different areas of
physics, such as atomic and molecular physics, condensed
matter physics, and quantum field theory (QFT) but also in
engineering, chemistry, and biology.26 In QFT, the disper-
sion force is closely connected to the Casimir effect; the
history of this subject is well described in introductory
papers27,28 and books.17,29–31 There are even more bizarre
situations where dispersion forces play an important role,
like in the adhesion of geckos32,33 or as an important element
in the generation of electric potentials in thunderstorms.34 A
vast list of references can be found in Milton’s Resource
Letter35 and in a paper by Buhmann and Welsch.36 The his-
tory of intermolecular forces along the last centuries can be
found in Rowlinson’s excellent book,37 which contains a
huge bibliography.

In this paper, we shall be concerned only with non-
retarded dispersion forces, which do not demand the quanti-
zation of the electromagnetic field. In fact, non-retarded
dispersion forces can be computed with ordinary quantum
mechanics. In particular, we shall focus our attention to the
van der Waals interaction between an atom and a perfectly
conducting surface. Our purposes are the following: (i) to
popularize a simple but powerful method proposed in 2007
by Eberlein and Zietal38 that is extremely well suited for this
kind of calculation (and used afterwards by them and other
authors,39–42); (ii) to show that the image method of electro-
statics can be extremely useful in applying the Eberlein and
Zietal method; and (iii) to present an original result—the cal-
culation of the van der Waals force between an atom and a
conducting “boss hat” (a conducting hemisphere attached to
an infinite conducting plane).

In 1932, Lennard-Jones43 was the first to use the image
method to obtain the Hamiltonian interaction operator to be
used in the quantum mechanical calculation of the van der
Waals interaction energy between a polarizable atom and a
conducting surface. Among other things, Lennard-Jones was
interested in the instantaneous adsorption of gases on the
outer surface of a solid. With this motivation in mind, he
computed the van der Waals interaction energy between an
atom and a perfectly conducting (infinite) plane and found
an attractive interaction energy proportional to 1=z3, where z
is the distance from the atom to the plane. However, in the
(asymptotically) retarded regime, Casimir and Polder14 later
showed that the (attractive) interaction energy between an
atom and an infinite conducting plane is proportional to 1=z4,
rather than 1=z3. It is worth mentioning that in Lennard-
Jones’ result a factor of 1/2 is missing. This numerical error
follows from a misuse of the image method. Recall that, for
the case at hand, this method states that the force acting on a
dipole near a perfectly conducting (infinite) plane is that
exerted by the image dipole and, consequently, the electrostatic
energy between the dipole and the conducting plane is given
by 1/2 times the interacting energy between the dipole and its
image. A detailed but elementary explanation of the presence
of this factor of 1/2 can be found in the literature.44 A similar
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calculation missing the same numerical factor occurs in the
quantum mechanics textbook of Cohen-Tannoudji, Diu, and
Lalo€e.10 Almost a decade after the Lennard-Jones paper,
Bardeen45 and Margeneau and Pollard46 presented more realis-
tic models for computing the interaction energy between an
atom and a metallic surface that took into account the structure
of the metal and enabled them, among other things, to analyze
deviations from the results obtained by the image method.
(For the interaction of a neutral but polarizable atom with
a dielectric surface see the paper by Mavroyannis,47 published
in 1963).

The non-retarded interaction between an atom and two
parallel and perfectly conducting plates can also be obtained
with the aid of the image method; in this case, there will be
an infinite number of images. A general discussion, includ-
ing any distance regime, can be found in Barton’s paper.48

The image method can still be used in the calculation of the
van der Waals force between an atom and a non-dispersive,
homogeneous, and isotropic medium. For instance, for the
case of an atom near a semi-infinite slab filled with such a
medium, the van der Waals force on the atom is the same as
if the atom were near a perfectly conducting plate except for
an extra factor of ð�� 1Þ=ð�þ 1Þ, where � is the electric per-
mittivity of the dielectric medium.49 We should mention that
in Ref. 49 the authors consider the non-retarded interaction
between an atom in an arbitrary level and a dielectric surface
characterized by a frequency dependent, complex, dielectric
constant. Finally, the van der Waals force between an atom
and a perfectly conducting sphere (grounded or isolated) was
computed recently by Taddei et al.50 Analogous results for
metallic and dielectric nanospheres were obtained by
Schmidt et al.;51 however, for simplicity, we shall be con-
cerned here only with perfectly conducting bodies.

Having completed this historical summary, we next
review the Eberlein and Zietal method, showing how we can
combine it with the image method. In Sec. III, we will illus-
trate the method by solving a couple of introductory prob-
lems. In Sec. IV, we treat the nontrivial case of an atom near
a conducting boss hat which, to the best of our knowledge,
has not appeared in the literature before.

II. EBERLEIN-ZIETAL METHOD

In this section, we briefly review Eberlein and Zietal’s
method.38 As will become clear, this method has the advant-
age of relating the quantum problem to a classical one in
electrostatics in a systematic and enlightening way, mainly
when the corresponding classical problem admits a simple
solution by the image method.

In order to compute the van der Waals interaction between
two neutral but polarizable atoms, say two hydrogen atoms,
we first need to find out the interaction Hamiltonian operator
between them to be used in the perturbative quantum-
mechanical calculation of their interaction. In this case, the
unperturbed Hamiltonian operator of the system formed by
the two atoms is simply the sum of the Hamiltonian opera-
tors of both atoms separately, which already include the
Coulomb interactions existing in both atoms. Because we are
in the short distance regime (non-retarded regime), this is
achieved by computing the Coulomb interaction between all
charges of one atom and all charges of the other. Once the
distance between them, though small to make retardation
effects negligible, is much greater than the Bohr radius, a

Taylor expansion can be performed, leading to a dipole-
dipole interaction as the dominant term.

However, for the case of a neutral but polarizable atom
interacting with a macroscopic body, say a perfectly con-
ducting body, we have to take into account a huge number of
pairwise Coulomb interactions. In this case, it is convenient
to introduce the electrostatic potential U and write the
Coulomb interaction Hamiltonian between the atom and the
conducting body in terms of the electrostatic potential

UCoul ¼
1

2

ð
qðrÞUðrÞ d3r : (4)

For a hydrogen atom, q in this equation includes the two op-
posite charges of the atom. The electrostatic potential UðrÞ
satisfies the Poisson equation r2UðrÞ ¼ �qðrÞ=e0, subject
to the appropriate boundary conditions on the surface S. For
a grounded surface, the boundary condition is UðrÞjr2S ¼ 0.
The electrostatic energy of the configuration is then given by
Eq. (4).

Solutions of Poisson’s equation can be obtained from the
Green function method,53 where the Green function Gðr; r0Þ
satisfies

r2Gðr; r0Þ ¼ �dðr� r0Þ : (5)

A general solution for the potential can then be written as

UðrÞ ¼ 1

e0

ð
Gðr; r0Þqðr0Þ d3r0 : (6)

In order that the electrostatic potential obeys the above-
mentioned boundary condition, it suffices to impose the
same condition on the Green function, namely,

Gðr; r0Þjr2S ¼ 0 : (7)

In terms of the Green function Gðr; r0Þ, the electrostatic
energy given by Eq. (4) takes the form

UCoul ¼
1

2e0

ð
d3r d3r0 qðrÞGðr; r0Þqðr0Þ : (8)

Since Eq. (5) is nothing but the Poisson equation for a point
charge at position r0 (aside from a multiplicative constant
factor), a particular solution of Eq. (5) is readily obtained:
Gpðr; r0Þ ¼ 1=ð4pjr� r0jÞ. However, this solution does not
obey the correct boundary condition (7). To adjust the
boundary condition, we add to this particular solution a solu-
tion of the homogeneous equation, giving

Gðr; r0Þ ¼ 1

4pjr� r0j þ GHðr; r0Þ ; (9)

where GHðr; r0Þ satisfies the Laplace equation r2GHðr; r0Þ
¼ 0. From Eqs. (7) and (9), we immediately determine the
boundary condition satisfied by GHðr; r0Þ,

1

4pjr� r0j þ GHðr; r0Þ
� �

r2S

¼ 0 : (10)

All the information about the geometry of the system is con-
tained in GHðr; r0Þ.
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Let us now consider the charge density qðrÞ to be used in
our problem. Treating the atom as an electric dipole with the
positive point charge at r0 and the negative one at r0 þ h, we
write qðrÞ ¼ q½dðr� r0Þ � dðr� ðr0 þ hÞÞ�. We now substi-
tute this expression for q and Eq. (9) into Eq. (8), and then
take the limit h! 0, such that qh! d (which, in a moment
will be interpreted as the atomic dipole operator), to obtain

UCoul ¼ lim
h! 0
qh ¼ d

1

8pe0

q2

jðr0 þ hÞ � ðr0 þ hÞj

�

þ 1

8pe0

q2

jr0 � r0j
þ 1

8pe0

q2

jr0 þ h� r0j

þ 1

8pe0

q2

jr0 � ðr0 þ hÞj þ
q2

2e0

½GHðr0 þ h; r0 þ hÞ

�GHðr0 þ h; r0Þ� �
q2

2e0

½GHðr0; r0 þ hÞ

�GHðr0; r0Þ�
�
: (11)

Although this expression for UCoul contains eight terms, only
the last four terms are of interest because only these terms
contain information about the interaction between the dipole
and the surface. Indeed, the first two terms account for the
divergent self-interaction of the point charges at r0 and
r0 þ h, and the next two terms represent the divergent self-
interaction of the dipole. The remaining terms can be cast
into a more useful form. Making a Taylor expansion of
GHðr0 þ h; r0 þ hÞ in powers of h, it follows that

GHðr0 þ h; r0 þ hÞ � GHðr0 þ h; r0Þ

¼ h � r0GHðr0 þ h; r0Þjr0 ¼ r0
þOðh2Þ : (12)

Analogously, a Taylor expansion of GHðr0; r0 þ hÞ yields

GHðr0; r0 þ hÞ � GHðr0; r0Þ ¼ h � r0GHðr0; r
0Þjr0¼r0

:

(13)

Hence, subtracting the irrelevant self-interaction terms men-
tioned before and using Eqs. (12) and (13), the desired inter-
action Hamiltonian operator between the atom and the
(grounded) conducting surface is given by

Hint ¼ lim
h! 0
qh ¼ d

q

2e0

ðd � r0Þ½GHðr0 þ h; r0Þ �GHðr0; r
0Þ�r0¼r0

¼ 1

2e0

ðd � r0Þðd � rÞGHðr; r0Þ
����
r¼r0¼r0

: (14)

The atomic dipole moment that appears in Eq. (14) is a
quantum operator. In first-order perturbation theory the
desired non-retarded interaction energy between the atom
and the conducting surface, denoted by UNR, is just the quan-
tum expectation value of Eq. (14), namely,

UNRðr0Þ ¼ hHinti

¼ 1

2e0

X3

m;n¼1

hdmdnirmr0nGHðr; r0Þjr¼r0¼r0
; (15)

where we used the fact that the only operators in the above
expression are dm and dn [GHðr; r0Þ is a c-number]. We shall
always work with an orthonormal basis, for which we can
write hdmdni ¼ dmnhd2

mi. Inserting this relation into the last
equation we finally obtain

UNRðr0Þ ¼
1

2e0

X3

m¼1

hd2
mirmr0mGHðr; r0Þjr¼r0¼r0

; (16)

which is precisely the expression obtained by Eberlein and
Zietal.38

This method has the advantage of relating the quantum prob-
lem to a corresponding classical one in electrostatics. Its
remarkable simplicity consists of the fact that to obtain the non-
retarded van der Waals interaction energy of an atom near any
conducting surface one must find only the homogeneous solu-
tion of Laplace’s equation GH corresponding to that geometry.
In other words, one must solve the classical problem defined by
Laplace’s equation and boundary condition (10). Except for
constants, these equations are those that yield the electrostatic
potential of the image charges for the problem of a charge at
position r0 in the presence of the surface S. Indeed, denoting by
/ðrÞ the electrostatic potential of that configuration, we can
decompose it into the sum of the potential of a charge plus
the potential of the image charges, denoted by /iðrÞ. Since
the potential of the single charge satisfies Poisson’s equation,
/iðrÞ obeys Laplace’s equation. Together with the boundary
conditions, the equations satisfied by /iðrÞ are

r2/iðrÞ ¼ 0;
q

4pe0jr� r0j þ /iðrÞ
� �

S
¼ 0 : (17)

From these equations and those satisfied by GHðr; r0Þ, it is
straightforward to identify

GHðr; r0Þ ¼
e0/iðrÞ

q
: (18)

Note that the dependence of the right-hand side of this equa-
tion on r0 is implicit because the image charge depends on
the position r0 of the physical charge. Hence, we see that the
image method is a useful tool in order to find the homogene-
ous solution GH, which in turn is the only function needed to
perform the Eberlein-Zietal calculation and obtain the (quan-
tum) non-retarded dispersive interaction between an atom
and a conducting surface S of arbitrary shape. In Secs. III–V,
we apply this procedure to several different geometries.

III. INTRODUCTORY EXAMPLES

We next apply Eberlein and Zietal’s method to three intro-
ductory examples: an atom close to a grounded conducting
plane, an atom close to a grounded conducting sphere, and an
atom close to an isolated, non-grounded conducting sphere.

A. Atom close to a grounded conducting plane

Consider a polarizable atom at position r0 in the presence
of an infinite conducting plane located at z¼ 0. All we need to
obtain the dispersion van der Waals interaction energy for this
system is to find the function GHðr; r0Þ associated with it.

Consider a charge q at position r0 ¼ ðx0; y0; z0Þ. Then the
image charge qi ¼ �q is located at position r0i ¼ ðx0; y0;�z0Þ.
The electrostatic potential at r created by the image charge �q
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located at position r0i is /iðrÞ ¼ �q=ð4pe0jr� r0ijÞ, where
r0i ¼ r0 � 2z0ẑ. Hence, from Eq. (18), we readily obtain

GHðr; r0Þ ¼
/iðrÞ
qe0

¼ � 1

4pjr� r0ij
: (19)

Now, we are ready to use Eberlein and Zietal’s method.
Substituting the previous expression for GHðr; r0Þ into Eq.
(16), we have

Uapðr0Þ¼�
1

8pe0

X3

m¼1

hd2
mi@m@

0
m

� 1

½ðx�x0Þ2þðy�y0Þ2þðzþz0Þ2�1=2

( )����
r¼r0¼r0

:

(20)

The derivatives in Eq. (20) can be easily computed. For
instance, for m¼ x we get

@x@
0
x

1

½ðx� x0Þ2 þ ðy� y0Þ2 þ ðzþ z0Þ2�1=2

( )����
r¼r0¼r0

¼ 1

8jz0j3
: (21)

An identical result is valid for m¼ y, while for m¼ z we
obtain

@z@
0
z

1

½ðx� x0Þ2 þ ðy� y0Þ2 þ ðzþ z0Þ2�1=2

( )����
r¼r0¼r0

¼ 1

4jz0j3
: (22)

Substituting these results into Eq. (20) then gives

Uapðz0Þ ¼ �
hd2

xi þ hd2
y i þ 2hd2

z i
64pe0jz0j3

: (23)

This is the well-known interaction between an atom and an infi-
nite conducting plane in the non-retarded regime, first obtained
in 1932 by Lennard-Jones43 (see also the textbook of Choen-

Tannoudji, Diu, and Lalo€e,10 and Dalibard’s paper25). If we
were in the retarded regime the interaction would be weaker,
falling with 1=jz0j4, as shown by Casimir and Polder.14

B. Atom close to a grounded sphere

Next, we consider an atom in the presence of a grounded
conducting sphere of radius R and center C. The correspond-
ing electrostatic problem is that of a point charge q at posi-
tion r0 ¼ ðx0; y0; z0Þ in the presence of the conducting sphere.
The image method for this problem tells us (see, for instance,
Griffiths’ textbook54) that we have to put an image charge
qi ¼ �ðR=r0Þq at position r0i ¼ ðR2=r02Þr0, where r0 ¼ jr0j as
sketched in Fig. 1. Hence, the potential created by the image
charge at a generic point r (r > R) is given by

/iðrÞ ¼
qi

4pe0jr� r0ij
¼ � qR

4pe0r0jr� r0ij
: (24)

Substituting Eq. (24) into Eq. (18), we find the homogeneous
solution GHðr; r0Þ for this configuration to be

GHðr; r0Þ ¼
e0/iðrÞ

q
¼ � R

4pr0jr� r0ij
: (25)

We now apply the Eberlein-Zietal formula (16). For sim-
plicity, we consider an isotropic atom so that hd2

x i ¼ hd2
y i

¼ hd2
z i ¼ hd2i=3. With no loss of generality (due to spherical

symmetry), we can orient the axes so that the atom is located
at r0 ¼ ð0; 0; z0Þ. The calculation is lengthier than the previ-
ous one but still involves only elementary derivatives; there-
fore, we will show only the main steps, leaving the
intermediate steps to the reader.

Let us compute @0x@xðr0jr� r0ijÞ
�1jr¼r0¼ð0;0;z0Þ, where r0

¼ ðx02 þ y02 þ z02Þ1=2
and

jr� r0ij ¼ x� R2

r0 2
x0

� �2

þ y� R2

r0 2
y0

� �2
"

þ z� R2

r0 2
z0

� �2
#1=2

: (26)

We note initially that

@x
1

r0jr� r0ij

� �
¼ � 1

r0
ðx� R2x0=r02Þ

½ðx� R2x0=r02Þ2 þ ðy� R2y0=r02Þ2 þ ðz� R2z0=r02Þ2�3=2
: (27)

By computing the @0x derivative of the previous expression and
then evaluating the result at r ¼ r0 ¼ ð0; 0; z0Þ, we find that

@0x@x
1

r0jr� r0ij

� �����
r¼r0¼ð0;0;z0Þ

¼ R2

z6
0ð1� R2=z2

0Þ
3
: (28)

An identical result is obtained for the coordinate m¼ y. In
the case m¼ z, it can be shown with an analogous but length-
ier calculation that

@0z@z
1

r0jr� r0ij

� �����
r¼r0¼ð0;0;z0Þ

¼ 2R2

z6
0ð1� R2=z2

0Þ
3
þ 1

z4
0ð1� R2=z2

0Þ
3
: (29)

Collecting the previous results and substituting them into
Eq. (16), we finally obtain the dispersion van der Waals
interaction energy between an atom and a grounded conduct-
ing sphere as

370 Am. J. Phys., Vol. 81, No. 5, May 2013 de Melo e Souza et al. 370

Downloaded 25 Apr 2013 to 146.164.3.22. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



Uagsðz0;RÞ ¼ �
hd2i

24pe0

4R3

z6
0

1

ð1� R2=z2
0Þ

3

"

þ R

z4
0

1

ð1� R2=z2
0Þ

2

#
: (30)

For later convenience, we rewrite Eq. (30) in terms of R and
the distance between the atom and the sphere z0 � R, which
we denote by a. Substituting a ¼ z0 � R in Eq. (30), we
obtain

Uagsða;RÞ ¼ �
hd2i

24pe0 a3

4

ð2þ a=RÞ3
þ a=R

ð2þ a=RÞ2

" #
:

(31)

For an atom with a dominant transition frequency, we can
write Eq. (31) in terms of its static polarizability a. Recalling
that for an atom in its ground state a is given by55

a ¼ 2

3�h

X
n 6¼0

jdn0j2

xn0

; (32)

where xn0 is the transition frequency between the nth state
and the ground state and dn0 is the corresponding transition
dipole moment, we have, for an atom with a dominant tran-
sition (say between the fundamental state and the first
excited one),

a ¼ 2jd10j2

3�hx10

) jd10j2 ¼
3�hx10

2
a : (33)

Since for an atom with this dominant transition hd2i
¼ jd10j2, Eq. (31) reduces to

Uagsða;RÞ ¼ �
�hx10a

16pe0 a3

4

ð2þ a=RÞ3
þ a=R

ð2þ a=RÞ2

" #
:

(34)

Some comments are in order. (i) The previous result was
obtained for the first time by Taddei and collaborators.50

However, the agreement of our Eq. (34) and their result is
off by a factor of 3. But a discrepancy by a numerical factor
between the two results is expected because those authors
employed the (semiclassical) fluctuating-dipoles method,
which is not expected to provide the correct numerical fac-
tors, though it does give the correct behavior of the interac-
tion. (ii) The atom-sphere system has been discussed by

many authors56–58 for spheres with different properties and
for regimes other than the non-retarded one and recently has
been a subject of great interest.59–62 In fact, the result
expressed in Eq. (31) was also obtained by Buhmann as a
particular case of a more general discussion.63 (iii) Equation
(34) is valid for any values of R and a, provided that the
conditions for the non-retarded regime remain valid. In the
limit R!1, with finite a, Eq. (31) reproduces the non-

retarded result for the atom-plane system Uagsðz0Þ ! �hd2i=
½48pe0 a3�, in agreement with Eq. (23) if there we write

hd2
x i þ hd2

y i þ 2hd2
z i ¼ ð4=3Þhd2i.

C. Atom close to an isolated conducting sphere

Let us now consider an isolated neutral conducting sphere.
This case differs from that of a grounded conducting sphere
because now GHðr; r0Þ does not satisfy the boundary condi-
tion in Eq. (7). Because the sphere is no longer grounded, the
presence of a point charge changes its potential. However,
Eqs. (8) through (16) do not depend on the boundary condi-
tion satisfied by GHðr; r0Þ and, as a consequence, the
Eberlein-Zietal formula (16) is still valid in this case and
GHðr; r0Þ still coincides with the electrostatic potential cre-
ated by the image charges of the problem. It is well known
that for an isolated sphere of radius R in the presence of a
charge q at position r0, there will be an extra image charge
located at the origin (r0i ¼ 0), whose electric charge is equal
to ðR=r0Þq. Taking this extra image charge into account, the
corresponding GHðr; r0Þ for this problem is

GHðr; r0Þ ¼ �
R

4pjr0jjr� r0ij
þ R

4pjrjjr0j ; (35)

where r0i ¼ ðR2=r02Þr0 as in the grounded case. In other
words, for the present case GHðr; r0Þ is obtained by adding to
that obtained in Sec. III B the contribution coming from the
extra image charge [the second term on the right-hand side
of Eq. (35)].

In order to apply the Eberlein-Zietal formula (16), we first
compute

@x@
0
x

R

4pjrjjr0j

� �����
r¼r0¼ð0;0;z0Þ

¼ @y@
0
y

R

4pjrjjr0j

� �����
r¼r0¼ð0;0;z0Þ

¼ 0; (36)

@z@
0
z

R

4pjrjjr0j

� �����
r¼r0¼ð0;0;z0Þ

¼ R

4pz4
0

: (37)

Using these expressions, as well as the result (30) for the
grounded sphere, we obtain the van der Waals interaction
energy between an atom and an isolated conducting sphere,

Uaisðz0;RÞ ¼ �
hd2i

24pe0

4R3

z6
0

1

ð1� R2=z2
0Þ

3

(

þ R

z4
0

1

ð1� R2=z2
0Þ

2
� R

z4
0

)
: (38)

As in the previous case, we can also write this expression in
terms of R and the distance from the atom to the surface of
the sphere a ¼ z0 � R. Doing this, we have

Fig. 1. Point charge q near a grounded conducting sphere of radius R and its

image qi.
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Uaisða;RÞ ¼ �
hd2i

24pe0 a3

4

ð2þ a=RÞ3

(

þ a=R

ð2þ a=RÞ2
� a3=R3

ð1þ a=RÞ4

)
; (39)

in agreement, up to a factor of 3, with the result obtained by
Taddei and collaborators.50 The second term on the right-hand
side of Eq. (39) is, in absolute value, greater than the third
one. Therefore, the interaction of an atom with an isolated
conducting sphere is always attractive. Since the only differ-
ence between the grounded and isolated cases is the last term
in Eq. (38), we conclude that the attraction is stronger in the
case of a grounded sphere. This is a consequence of the charge
acquired by the grounded sphere.

We finish this section by taking the limit R! 0, but with
4pe0R3 ! as, where as is the (finite) polarizability of a very
small conducting sphere. Then Eq. (39) reduces to

lim
R! 0
as ¼ 4pe0R3

Uaisða;RÞ ¼ �
hd2i

24pe0 a3

4R3

a3
¼ � �hx10aas

ð4pe0Þ2 a6
;

(40)

where in the last step we have assumed that the transition
from the fundamental state to the first excited state is domi-
nant. This result is a London-like dipole-dipole interaction,
as expected.

IV. ATOM CLOSE TO A CONDUCTING BOSS HAT

SURFACE

Having solved some simple cases in Sec. III, we are now
in position to solve a more interesting case—an atom near a
the conducting surface with the shape of a “boss hat.” This
surface consists of a conducting hemisphere of radius R
together with an infinite conducting plane. This geometry is
sometimes called a hemispherical boss and is shown, along
with the necessary image charges, in Fig. 2.

As shown in the textbook of Schwinger and collabora-
tors,52 three image charges are required in this case. To see
this, consider a charge q at position r0 in the presence of the
conducting boss hat. Now put a charge qi1 ¼ �ðR=r0Þq at

position r0i1 ¼ ðR2=r02Þr0. In cylindrical coordinates, we have
r0 ¼ jr0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þ z02

p
, which leads to

qi1 ¼
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q02 þ z02
p q ;

r0i1 ¼
�

R2

q02 þ z02
q0;/0;

R2

q02 þ z02
z0
�
:

(41)

As used in the atom-sphere case, this pair of charges (q and
qi1) furnishes a null potential on the spherical part of the con-
ducting surface. But the potential generated by these two
charges does not yet satisfy the desired boundary condition
on the plane part of the conductor. Therefore, we must intro-
duce two more image charges: one, with charge qi2 ¼ �qi1

being the mirror image of qi1; and the other, with charge
qi3 ¼ �q being the mirror image of the physical charge q.
The addition of these two charges (qi2 and qi3) gives a null
potential on the plane z¼ 0 but with the advantage of not dis-
turbing the null potential on the hemisphere because (by
symmetry) qi2 is precisely the image charge of qi3 with
respect to the sphere. Consequently, the four charges—the
real charge q plus the three image charges qi1, qi2, and qi3—
create an electrostatic potential that is zero on the boss hat
conducting surface. In summary, the positions of the four
charges are

r0 ¼ ðq0;u0; z0Þ ; r0i1 ¼
R2

q02 þ z02
q0;/0;

R2

q02 þ z02
z0

� �
;

(42)

r0i2 ¼
R2

q02 þ z02
q0;/0;� R2

q02 þ z02
z0

� �
;

r0i3 ¼ ðq0;u0;�z0Þ ; (43)

as shown in Fig. 2.
With this image configuration, the potential generated by

the image charges is just a superposition of the potentials
created by the charges qi1, qi2, and qi3, namely,

/iðrÞ ¼
1

4pe0

qi1

jr� r0i1j
þ qi2

jr� r0i2j
þ qi3

jr� r0i3j

� �
: (44)

Using the previous expressions for qi1, qi2, and qi3, as well as
for r0i1, r0i2, and r0i3, and defining

Fig. 2. Charge q near a conducting boss hat surface and its three image charges.
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n�ðr; r0Þ ¼ jr� r0i1j ; nþðr; r0Þ ¼ jr� r0i2j ;
nðr; r0Þ ¼ jr� r0i3j ; (45)

the function GHðr; r0Þ for the boss hat can be written

GHðr;r0Þ ¼
1

4p
� 1

nðr;r0Þ�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02þ z02

p
n�ðr;r0Þ

þR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02þ z02

p
nþðr;r0Þ

" #
;

(46)

where

nðr; r0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q02 þ q2 þ ðz0 þ zÞ2 � 2q0q cosð/0 � /Þ

q
(47)

and

n6ðr; r0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4q02 þ ðq02 þ z02Þ2q2 þ ½ðq02 þ z02Þz 6 R2z0�2 � 2R2ðq02 þ z02Þq0q cosð/0 � /Þ

q
; (48)

and we have also used Eq. (18). The dispersion interaction energy of the boss hat conductor with an atom at a generic position
ðq0;/0; z0Þ can then be obtained from Eq. (16). After a lengthy but straightforward calculation, we find that this energy is

Uabhðq0; z0Þ ¼ �
1

64pe0z3
0

hd2
qiNqðq0; z0Þ þ hd2

uiNuðq0; z0Þ þ hd2
z iNzðq0; z0Þ

n o
; (49)

where

Nqðq0; z0Þ ¼ 1� 8Rz3
0

½ðR2 þ z2
0Þ

2 þ ðR2 � q2
0 � 8z2

0Þq2
0�R2 þ ðz2

0 þ q2
0Þ

2q2
0

½ðq2
0 þ z2

0 þ R2Þ2 � 4R2q2
0�

5=2
� q2

0 þ R2

ðq2
0 þ z2

0 � R2Þ3

( )
; (50)

Nuðq0; z0Þ ¼ 1þ 8R3z3
0

1

ðq2
0 þ z2

0 � R2Þ3
� 1

½ðq2
0 þ z2

0 þ R2Þ2 � 4R2q2
0�

3=2

( )
; (51)

Nzðq0; z0Þ ¼ 2þ 8Rz3
0

ðq2
0 þ z2

0 � R2Þ3
R2 þ z2

0 þ
fðR; q0; z0Þ

½ðq2
0 þ z2

0 þ R2Þ2 � 4R2q2
0�

5=2

( )
; (52)

with

fðR; q0; z0Þ ¼ �R2q2
0½�10q4

0z4
0 � 10q4

0R2z2
0 � 10R4q4

0

þ 8q2
0R4z2

0 � z8
0 þ 2q6

0z2
0 þ 8q2

0z6
0

� 36q2
0R2z4

0 þ 10q2
0R6�

� ðR4 � z4
0Þ

2ðR2 � z2
0Þ

2

� 5q2
0z4

0ðz2
0 þ q2

0Þ½ðz2
0 þ q2

0Þ
2 � q2

0z2
0� :

(53)

As expected, the interaction energy does not depend on /
due to the axial symmetry of the system. Furthermore, one
can immediately recover the atom-plane result (23) by taking
R¼ 0. In Fig. 3, we plot the interaction energy given by
Eq. (49) multiplied by R3 (apart from a constant factor) as a
function of z0=R for the particular case where the atom is on
the OZ axis (q0 ¼ 0) and its atomic polarizability in this
direction is dominant, i.e., hd2

z i � hd2
qi; hd2

/i. Note that only
the function Nz is then necessary.

It is interesting to analyze the curvature effects on the inter-
action between the atom and the boss hat surface by comparing
the interaction for this case, Eq. (49), with that for the atom-
grounded sphere case, Eq. (30). To be consistent, we will now

consider an isotropic atom in Eq. (49) because we made this
assumption in obtaining (30). However, we shall compare
these two expressions only up to third order in ðz0 � RÞ=R.
Making a Taylor expansion of Eqs. (30) and (49) and main-
taining only terms up to third order, we obtain the respective
expressions

Fig. 3. Interaction energy between an atom and a conducting boss hat sur-

face as a function of z0=R (in arbitrary units) with the atom on the OZ axis

and assuming that hd2
z i � hd2

qi; hd2
/i.
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Uagsðz0;RÞ ¼ �
hd2i

48pe0ðz0 � RÞ3
1� z0 � R

R

�

þðz0 � RÞ2

R2
� 7ðz0 � RÞ3

8R3
þ � � �

)
; (54)

Uabhðz0;RÞ ¼ �
hd2i

48pe0ðz0 � RÞ3
1� z0 � R

R

�

þðz0 � RÞ2

R2
� 9ðz0 � RÞ3

4R3
þ � � �

)
: (55)

Equations (54) and (55) coincide up to second order in
ðz0 � RÞ=R; in other words, up to order ðz0 � RÞ2=R2, the
interaction of an atom with a boss hat surface is the same as
that of an atom with a sphere. This is reasonable because an
atom very close to a boss hat surface can not distinguish it
from a sphere. As the distance between the atom and the
boss hat increases, the differences between the two surfaces
become apparent. The comparison of Uagsðz0;RÞ, Uabhðz0;RÞ
and their expansion up to second order in ðz0 � RÞ=R are
illustrated in Fig. 4.

V. CONCLUSIONS AND FINAL REMARKS

We have discussed a method introduced by Eberlein
and Zietal38 for computing the van der Waals interaction
between an atom and a conducting surface of arbitrary
shape. We have also applied the method to three simple
examples and also to the more complex case of an atom
near a conducting boss-hat surface. This method has the
advantage of quickly leading us to a corresponding classical
problem in electrostatics that allows us to use well-
established methods for solving the Laplace or Poisson
equations. In particular, when the problem admits an image
solution the desired van der Waals force can be straightfor-
wardly obtained.

The use of the image method is not mandatory. In fact, in
the pioneering work on this method,38 the authors discussed
the problems of an atom interacting with an infinite conduct-
ing semi-plane, and an atom interacting with a conducting
cylinder, using the Green function method. Also, this method
has been employed without the use of the image method in

the calculation of the non-retarded interaction between an
atom and a dielectric slab,40 and in the computation of the
non-retarded interaction of an atom and an infinitely con-
ducting plane with a circular hole.39 However, even for quite
non-trivial geometries, the generalized version of the image
method introduced by Sommerfeld64 can be used together
with the Eberlein and Zietal method to provide the correct
solutions, as for instance, an atom and a semi-infinite con-
ducting plane42 and an atom near a finite conducting disk, as
well as an atom and an infinitely conducting plane with a cir-
cular hole.41 Very recently, the non-retarded interaction
between an atom and a perfectly conducting disk was gener-
alized to the case where the disk is fixed on a semi-infinite
non-dispersive dielectric slab.65

Due to its power and simplicity, the Eberlein and Zietal
method has a very favorable cost-benefit ratio for students
who are beginning to study non-retarded dispersion forces.
Many other systems can be handled using this method. We
invite the interested reader, for instance, to re-obtain the non-
retarded force between an atom and a conducting wedge with
aperture angle equal to p=n, with n a positive integer, first
obtained by Mendes et al.66 The retarded Casimir-Polder
interaction for this case was calculated by Brevik et al.67

For situations involving non-dispersive, homogeneous,
and isotropic dielectrics with geometries that allow the deter-
mination of the image charges, this method can be general-
ized in a natural way because the function GH will still be
interpreted as the contribution of the image charges.
However, since this is intended to be a pedagogical paper,
we have considered only perfectly conducting bodies. There
are many other methods of computing dispersion forces
between atoms and macroscopic bodies that are much more
general than the one discussed here, in the sense that they
consider all distance regimes, thermal effects, and all kinds
of materials, not only perfectly conducting or non-dispersive
dielectric ones. A successful method for this kind of calcula-
tion was introduced by Lifshitz in 195668 and generalized by
Dzyaloshinskii, Lifshitz, and Pitaevskii in 1961.69

Dispersive forces are still the subject of intense research,
mainly in connection with the search for repulsive forces,
important in a variety of situations.39,41,60,70–76 We should
mention that in 1970 Feinberg and Sucher77 had already
shown that an electrically polarizable atom and a magneti-
cally polarizable one repelled each other, a result that has
recently been re-obtained in a simpler way.78,79 Boyer,82 in
1974, and Kupiszewska,83 in 1993, have also discussed re-
pulsive Casimir forces. The interaction between an electri-
cally polarizable atom and a magnetically polarizable one
has also been discussed with the atoms embedded in a
magneto-dielectric medium.80,81 The dispersion interaction
between a ground state atom and a corrugated surface was
first discussed by Messina et al.,84 where the so-called scat-
tering approach was employed. The existence of a lateral
Casimir and Polder force gave rise to several interesting pro-
posals for experiments on dispersive forces, some of them
including Bose-Einstein condensates near periodic gratings.
We hope this paper will motivate readers to study this inter-
esting and interdisciplinary subject.
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