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Abstract
Traditional distance learning evaluations often fail to diagnose students’ deficiencies in the early stages. This research tackles
this challenge by implementing online formative assessments and analyzing the records of an introductory physics course,
aiming to predict at-risk students. These online assessments go beyond mere evaluation, offering valuable benefits for stu-
dents, such as immediate feedback, the opportunity to retake assessments, and learn from mistakes, all fostering deeper
understanding. Three machine learning algorithms were used to predict students’ final situation. All algorithms demonstrated
good classification performance. However, the support vector machine (SVM) algorithm surpassed the others. This result
allows us to predict potential failure during the very first formative assessment. This method empowers instructors to intervene
early and improve student success, potentially leading to higher retention rates. These findings pave the way for personal-
ized learning interventions in distance learning education. Potentially transforming students’ outcomes and fostering a more
engaging learning experience.

Keywords Teaching physics ·Higher education ·Online learning ·Data mining · Learning strategies · Formative assessments

Introduction

Educational data mining constitutes a subset of education
research that uses extensive data systems and machine learn-
ing algorithms to forecast student academic success and/or
their progression towards graduation (Alam, 2023; Khan &
Ghosh, 2021; Sghir et al., 2023). The origins of this field
within education research date back to the early 1990s (Nan-
deshwar et al., 2011) and investigations within the domain of
physics education research (PER) show the importance of the
use of data mining techniques (Aiken et al., 2019; Hansen,
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2023; Richards & Kelly, 2023; Yang et al., 2020; Zabriskie
et al., 2019).

Physics courses are central in STEM education (science,
technology, engineering, and mathematics). Recognizing the
critical need for a more robust STEM workforce, the Pres-
ident’s Council of Advisors on Science and Technology
(PCAST) outlined strategies in 2012 to improve student
retention in STEM fields (Olson & Riordan, 2012). This ini-
tiative stemmed from the goal of adding one million more
STEM professionals to the United States workforce within a
decade. However, there is a significant challenge: less than
40% of students entering STEMfields actually graduate with
a STEM degree. Increasing retention rates to just above 50%
would be instrumental in achieving the objective. The issue
of STEM student retention is not new, and numerous stud-
ies have explored this persistent challenge (Hall et al., 2015;
Sithole et al., 2017; Winberg et al., 2019).

An integral component of course design is the evaluation
method (Richlin, 2023; Sudakova et al., 2022), which con-
stitutes a cornerstone in enhancing and optimizing retention
rates. Assessments are usually distinguished as formative
and summative, which are better understood as assessments
for learning and of learning, respectively. Formative assess-
ments (FA) can provide educational outcomes by providing
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evidence on student needs (Wiliam, 2011). Several investi-
gations show the importance of well-structured or creatively
thought about formative assessments to engage both teach-
ers and learners in a better learning process (Bennett, 2011;
Gikandi et al., 2011; Villarroel et al., 2018). In 2016, Wylie
and Lion showed that formative assessments enable the
adjustment of instructional strategies and the achievement
of academic objectives through feedback from peers and
teachers (Wylie & Lyon, 2016). However, the proposed
method requires training for peers and teachers to ensure its
effectiveness, which complicates its implementation. With
technological advancements, these formative assessments
can be designed, implemented, and corrected online, provid-
ing students with immediate feedback (Bulut et al., 2019,
2023). Moreover, technology-supported formative assess-
ment generates valuable data that can be leveraged for student
monitoring and/or to assess the mechanistic reasoning using
machine learning algorithms (Martin & Graulich, 2023).

This study aims to identify and provide guidance to stu-
dentswho are at risk of academic failure. To achieve this goal,
we implemented a formative assessment within the Moodle
platform as part of an undergraduate introductory physics
course, and the data collected was utilized to train machine
learning algorithms for predicting and classifying students’
final situations. Initially, this assessment was offered as an
optional test for students in 2019, but has now become an
integral part of the assessment methodology. The purpose of
this FA is to empower students to evaluate their own learning
process and identify areas where they may need improve-
ment before taking proctored exams (PE). In doing so, we
can closely monitor students’ academic performance, iden-
tify thosewho require additional support, and facilitate direct
communication with tutors.

In a nutshell, this study addresses the following research
questions:

RQ-1. How can we support the learning of students within
our logistic limitations?

RQ-2. How do institutional data and students’ perfor-
mance in the new FA predict the final situation in an
introductory course of physics?

Background—Related Literature

In this section, we introduce the theoretical concepts under-
lying the learning-by-doing method and the resubmission
process, both of which are essential for categorizing the
implemented formative assessment. Furthermore, we review
relevant literature to highlight their significance. Lastly, we
provide a brief discussion of existing research on the appli-

cation of machine learning algorithms to predict the final
performance of students in physics courses.

Theoretical Background

This study used the learning-by-doing (LBD) educational
approach. John Dewey (1859–1952), an American philoso-
pher, is the most influential figure in experiential education
(Williams, 2017). Unlike traditional memorization, LBD
emphasizes student involvement in projects and tasks to
solidify understanding. As Dewey believed, true learning is
based on experience.

This approach encompasses various learning processes
based on practical activities and experimentation, both men-
tal and physical. The benefits of implementingLBD inSTEM
education have been documented in several studies (Das
Dores et al., 2023; Nantsou et al., 2021, 2024a, b; Nantsou &
Tombras, 2022; Niiranen & Rissanen, 2017) and other edu-
cational fields (Effie Steriopoulos & Harkison, 2022; Molly
George et al., 2015; Sangpikul, 2020). These advantages
include deeper understanding, improved problem-solving
skills, increasedmotivation, and better information retention.

In the specific case of distance learning education, online
learners often lack face-to-face interaction that can be benefi-
cial for learning. For that reason, the implementation of LBD
activities in online learning might be particularly crucial.
Several studies in online education highlight the importance
of Learning-by-Doing in developing problem-solving skills
(Hettiarachchi, 2013;Rossano et al., 2020;Sim&Lau, 2018).

Resubmission as a Remediation Process

The goal of remediation is to support the learning pro-
cess of students by identifying gaps in their knowledge and
helping them reach the expected level (Boylan & Saxon,
1999). Resubmission provides an opportunity to submit a
revised version of an activity for evaluation, aligning with
the learning-by-doing approach. Several studies emphasize
the importance of resubmissions in the online evaluation pro-
cess. Ardid et al. (2015) used the idea of resubmission as a
form of continuous assessment in their online course eval-
uations. They observed that these new assessments had the
potential to distinguish between students who might fail or
pass the course.

Pinchbeck and Heaney (2017) permitted only one resub-
mission in their evaluations, along with two interventions:
(1) an online synchronous tutorial session and (2) a support-
ing asynchronous forum. They found that these intervention
measures improved the quality and quantity of resubmis-
sions. Howard et al. (2019) allowed students to resubmit their
quizzes along with explanations for errors, with the poten-
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tial to earn an additional mark, as a remediation proposal.
They observed that this proposed remediation had a positive
impact on the final grades of the students, particularly among
those who had initially achieved higher grades.

Use of Machines LearningMethods to Predict
Outcomes in Physics

Machine learning algorithms are increasingly used to predict
the final performance of students in physics. Zabriskie et al.
(2019) developed various models for forecasting using logis-
tic regression and random forest algorithms. These models
were constructed for two courses: Introduction Calculus-
based to Mechanics and Electricity and Magnetism. They
trained the algorithms using institutional data and grades
fromhomework assignments and exams.Notably, they found
the logistic regression model can accurately predict students
who are likely to earn grades lower than B, with accu-
racy rates exceeding 70%, as early as the first week of the
course. Among the used data, homework grades were identi-
fied as the most crucial factors in model development, while
demographic variables, gender and race were deemed less
significant for algorithm training.

Yang et al. (2020) extended the earlier research by build-
ing predictive models. In their study, they used the random
forest-supervisedmachine learning algorithm. They incorpo-
rated data from the Introductory Mechanics course offered
at two institutions with distinct demographic profiles. Their
focus was on developing models capable of predicting
students earning grades or withdrawing, a task that had
not been achieved in previous research. They recognized
the importance of selecting appropriate metrics to address
unbalanced data to achieve higher accuracy percentages.
They also emphasized that certain data, such as underrep-
resented minorities, first-generation college status, and low
socioeconomic status, did not significantly contribute to the
construction of predictive models.

Richards and Kelly (2023) examined how academic
coursework, performance, and demographic characteristics
of community college students enrolled in astronomy courses
influence their performance. They employed logistic regres-
sion to identify factors that predict students’ grades in
astronomy. Bahr’s deconstructive approach served as their
theoretical framework (Bahr, 2013). This framework empha-
sizes understanding the educational pathways of students
within institutions and how these pathways impact their
progress towards academic goals. Richards and Kelly (2023)
found that difficulties in mathematics, potentially indicated
by failing or retaking mathematical courses, were associated
with graduation delays, lack of interest in STEM disciplines,
and STEM attrition. Notably, they observed that demo-
graphic variables such as ethnicity, socioeconomic status,
gender, and age were not significant predictors.

Methodology

Institutional Context

Introduction to Physical Sciences I (ICF1), offered by CED-
ERJ (Distance Education Center of the State of Rio de
Janeiro), is the title of the course in which this work was
developed. The course is coordinated by the Physics Insti-
tute of the Federal University of Rio de Janeiro and has
the particularity of being present in six different degrees
(Physics, Chemistry, Mathematics, Biological Sciences, and
both Meteorological and Production Engineering), with stu-
dents present in 23 different cities from the Rio de Janeiro
State. This course is typically supported by two professors,
7 distance tutors (DT), and more than 40 face-to-face tutors
(FT). Throughout the semester, only FTs have direct contact
with students, providing assistance with physics experiments
that are done on pre-schedule days. Professors and DTs have
indirect contact and primarily respond to inquiries regarding
course material.

In ICF1, exams generally adhere to the CEDERJ stan-
dard assessment process: home exams (HE) and proctored
exams in person (PE) account for 20% and 80% of the
final grade, respectively. Before COVID-19 pandemic, these
home exams consisted of two types of assessment: two
optional assessments (OA) and two distance assessments
(DA). Both types were considered formative assessments
(FA) and, in 2018, we recognized the need for improve-
ment. Consequently, in 2019, we improved the OA, which
received positive feedback from students. As a result, we
decided to implement mandatory FAs for every topic of the
course, including introduction,1 optics, vectors, kinematics,
forces, and astronomy. The primary objective of these FAs is
to encourage practice, through exercises, focusing on funda-
mental content of each topic without penalizing mistakes.

Formative Assessments (FAs)

The new assessment templates were implemented on the
CEDERJ online platform (which uses Moodle language), as
follows:

• Students perform the FA on the online platform by log-
ging in to their profiles.

• The FA consists of an average of twenty conceptual ques-
tions or practical exercises that directly involve some
fundamental concepts of the subject.

• All responses must be provided in a written format inside
an input text box. The number of significant figures or

1 The topic “introduction” here refers to the expected prior content of
basicmathematics and physics concepts that the students should already
have dominated before the course.
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decimal places required in the answer text box is speci-
fied. Some examples of the questions are presented in the
Appendix.

• The FA can be taken as many times as students want
without penalties and they are informed that each attempt
lasts an average of 40 to 60min. The FA can be submitted
in a predefined time frame of up to three weeks.

• Each time the FA is started, the questions are shuffled in
a random order, and the numerical values used in each
question are also generated randomly. Students have at
most three hours to complete the assessment. Thus:

– In each new attempt, students will receive a shuffled
sequence of questions, making it difficult to sequen-
tially memorize how to solve each question.

– The new attempt will only be available to the student
after one hour to avoid memorization of the question-
naire.

– The student must have to recalculate all the ques-
tions in a new attempt since their numerical values
are always “renewed” by random selection within a
pre-establishedvalues domain.This feature forces the
student to solidify the concepts involved in the FA.

– Sharing exact solutions and copies among students
becomes less possible. Even if two students decide
to do the exercises simultaneously, the order of each
question will be different for each student and the
numerical values will also be different for similar
questions.

• The platform is programmed to automatically correct the
questions and immediately report the student of his final
score providing the student with the correct answer to
each question.

• In case students want to improve their scores, they must
perform a new attempt knowing that the new attempt
overwrites the last score regardless of its new value. This
feature gives students the possibility to achieve the max-
imum score.

• The system records each attempt by each student, allow-
ing for subsequent monitoring by the course coordinators
not only of the effectiveness of the practice but also of
the performance of those students who sought to make
the FA.

It is important tomention that to address student inquiries:
we offer a comprehensive support system with both syn-
chronous and asynchronous options. Recognizing the impor-
tance of personalized attention, we provide live video tutor-
ing from 8:00 AM to 7:00 PM, Monday through Friday.
In addition, students can submit questions and receive a
response from a qualified tutor within 24h.

Collected Data

The ICF1 course is usually attended by more than 1000 stu-
dents every semester, andwith the implemented assessments,
a great amount of data is generated and can be used to make
predictions about the final situation of students. In this con-
text, machine learning algorithms offer a good alternative to
predict the final situation of students, outperforming simple
statistical methods. To make these predictions, the data to
be used should be properly selected. It is important to note
that all data were collected from a Brazilian public institu-
tion, making the evaluation results also public by Brazilian
law. Furthermore, all data were anonymized, ensuring that
no individual student could be identified in our results and
this article, thus exempting the need for student consent, as
outlined in the General Data Protection Regulation (GDPR)
and theBrazilianData Protection Law (LeiGeral de Proteção
de Dados, LGPD).

The data used to make the predictions ranged from the
second semester of 2020 (2020-2) to the second semester of
2022 (2022-2). The first four semesters were used to train and
evaluatemachine learning algorithms,while the last semester
was employed to simulate how the algorithm would have
predicted the final situation of students.

These semesters were chosen because they have an equal
number of assessments. In Table 1, all predictors used in this
study are presented together with their respective descrip-
tions. The total number of students across the 5 semesters is
5476, and it is important to note that some students took the
course more than once, but this was not taken into account
during the training of the algorithms.

Table 1 Full list of predictors

Predictor Type Description

Course Nominal Students’ course

Campus Nominal City where students are enrolled

Semester Numeric Semester of the year (1 or 2)

Introduction Numeric FA of basic concepts expected prior to the
course

Practice1 Numeric Optics experiments and analysis

Optics Numeric FA of geometric optics

Vectors Numeric FA of vectors

PE1 Numeric PE of geometric optics and vectors

Kinematics Numeric FA of kinematics

Practice2 Numeric Kinematics/Force experiments and analy-
sis

Forces Numeric FA of forces

Astronomy Numeric FA of astronomy

PE2 Numeric PE of kinematics, forces and astronomy

Score trial Numeric Pre-grades for all FAs

Frequency trial Numeric Total number of trials for each FA
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Data Preprocessing

The data generated and stored on the Moodle platform were
pre-analyzed using some Python 3.7.11 libraries such as
Numpy 1.21.5 (Harris et al., 2020), Pandas 1.3.4 (Team,
2020; Wes et al., 2010), Matplotlib 3.5.3 (Hunter, 2007) and
Seaborn 0.12.2 (Waskom, 2021). From the FAs results, three
features were extracted from the Moodle platform, related
to time, frequency, and scoring. Regarding time, we consid-
ered the total time allocated to students to obtain the highest
possible grade, as this time limit was varied across the five
semesters under study. In particular, it was observed that
some students participated up to 17 attempts on certain FAs,
while others attempted them only once. For this reason, the
number of attempts by each student was counted for each FA
and was considered as a frequency feature.

This type of data often presents certain particularities that
need to be addressed. The first was related to data clean-
ing, since different datasets exhibited different formats and/or
missing values. The missing data were filled with a value of
negative one tomake it clear for the algorithm that the student
did not take that assessment. Since the course and campus
are nominal data, a data transformation was performed from
nominal to binary, so all the data could be interpreted as
numbers by the algorithms.

After analyzing all predictors, it was observed that differ-
ences in the time window allotted to students to complete
each FA did not show a change in the prediction of their final
situation. Therefore, this feature was excluded from the final
results.

Machine LearningMethods

In order to classify the final situation of the students, three
supervised machine learning algorithms were chosen. These
algorithms are trained with data that already have a classifi-
cation or label, allowing the algorithm to be trained with a
smaller amount of data. The chosen algorithms are described
below:
1. Logistic regression (LR) is used for a binary or multi-

nomial classification (Bertsimas & King, 2017). The
classification is performed by expressing the variables or
attributes (numerical or categorical) in a linear equation
as follows:

y = θ0 + θ1x1 + θ2x2 + ... = θTX, (1)

where X and θT are vectors of the variables (xi ) and the
regression parameters (θi ), respectively. This equation
is then transformed into a probability using the sigmoid
function

p(X) = exp(θTX)/(1+ exp θTX). (2)

In order to optimize the θi parameters, the newton-cg
solver from scikit-learnwas employed, whichmaximizes
the likelihood (Fan et al., 2008; Pedregosa et al., 2011;
Peng et al., 2002).

2. Support vector machine (SVM) was initially designed
for binary classification and has been extended for mul-
ticlass classification and regression (Chen et al., 2005).
The underlying concept of this algorithm involves iden-
tifying a hyperplane that can effectively separates two
classes, expressed mathematically as follows:

W · X + b = 0. (3)

In this equation, W denotes the hyperplane or hyper-
vector, X represents all the variables or attributes, of
the classes, and b is the bias which determines the
gaps between the hyperplane and the nearest data point
(variables). The algorithm’s objective is to determine W
while maximizing the value of b (Smola & Schölkopf,
2004). In many cases, the classes are not linearly sep-
arable. To address this, the notion of kernel trick was
introduced. This technique involves mapping the orig-
inal variables into a higher-dimensional space where
linearly separability of classes can be achieved. Within
Scikit-Learn, four kernels have been incorporated: linear,
multinomial, radial base function, and sigmoid kernels.
In situations where classes are not linearly separable, the
algorithm employs the gradient descent method to opti-
mize the hyperplane and bias. Scikit-Learn employs the
SequentialMinimal Optimization (SMO)method for this
optimization process (Chang & Lin, 2011; Fan et al.,
2008; Platt, 1998).

3. Stochastic gradient boosting method (GBM) combines
the power of decision trees with optimization techniques
(Friedman, 2002). It offers the flexibility to adjust both
the depth of the user-defined trees and the total number
of trees in the ensemble, although it is recommended to
limit the depth to 6 (Hastie et al., 2001). Once the depth
and number of tree parameters are configured, the process
continues using a stochastic technique. This entails that,
at each step, a random subset of variables is selected and
distributed among the trees. Each tree is constructed and
trained to perform a classification, often referred to as a
weak classifier.
Classification within each tree is accomplished by for-
mulating the variables in a linear equation and applying
a sigmoid function to assign to one of the two possible
classes in a binary classification scenario. By utilizing
these weak classifiers, a comprehensive classifier is con-
structed. Subsequently, the quality of the classification is
evaluated using the cross-entropy function (or log-loss).
Further enhancements of this classification are made
using a gradient descent method to minimize the clas-
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sification error. At the end, a function F(x) is found to
map variables x to their output values y (Hastie et al.,
2001).

Metrics

Metrics in machine learning are quantitative values used
to evaluate task performance. An important metric com-
monly employed to evaluate binary classification tasks is the
area under the receiver operating characteristic curve (AUC)
(Hanley &McNeil, 1982). Unlike the accuracy metric, AUC
is a reliable predictor when dealing with imbalanced data,
which is often encountered in real-world datasets and is also
addressed in this work.

The AUC value is determined by calculating the area
under the curve of the sensitivity versus (1 - specificity).
The sensitivity and specificity represent the probabilities of
correctly predicting the students who will pass and fail the
course, respectively. To achieve a balance between sensitivity
and specificity, a threshold τ must be determined (Brown &
Davis, 2006). An optimal cut-off point for τ can be obtained
by maximizing the Youden index (Perkins & Schisterman,
2006), a metric commonly used in other machine learning
classifications (Bertolini et al., 2021; Fluss et al., 2005).

Data Analysis

Some considerations should be expressed regarding the algo-
rithm training.As explained in the previous section, to strike a
balance between specificity and sensitivity, the Youden index
was maximized to determine the cut-off point threshold.
Cross-validation was employed for training the algorithms,
which is a resampling method. Kohavi et al. (1995) deter-
mined the number of folds for cross-validation for real
datasets to be equal to 10 and this was used to train the algo-
rithms.

By analyzing the data, it was observed that the number of
students participating in each attempt decreased by half in
each FA. Therefore, based on this and some predicting tests,
it was considered better to use only the first two attempts of
each FA.

Results and Discussions

The online learning environment, a Moodle-based platform,
used in CEDERJ courses allows course coordinators to have
a large amount of useful data at hand to monitor the progress
of students throughout the semester. In order to respond to
the first question (RQ-1), online FAs were implemented in

Moodle. The following section will present an analysis of
student grades from one of the FA, illustrating how their
progress can be effectively tracked.

Mean Grades by Attempt

As a case test, the evolution of the students’ average scores
for the Introductory FA of the second semester of 2020 (for
a maximum score of 10.0) is presented in Fig. 1. The darker
vertical gray bars indicate the region between the end of the
first quartile and the beginning of the last quartile, showing
that 50% of the students have grades in this region. The small
horizontal lines at each attempt indicate the average grade
of that attempt (for example, at the first attempt the average
score was slightly over 5.3). Students are divided into groups
with red triangles (labeled “still trying to improve”) and blue
hexagons (labeled “last attempt”) that represent the aver-
age grade of students who made and did not make the next
attempt, respectively. This separation shows the improve-
ment of students who make the second attempt. The gray
area of the plot for each attempt (referred to from now on as
’violin plots’ due to its resemblance) helps to visualize the
distribution of students for each score.

For example, when analyzing the first attempt in Fig. 1, the
red triangle on the first attempt indicates the average score of
the set of studentswho alsomade the second attempt. In addi-
tion, the horizontal line of the second attempt is calculated
using all the students in this second attempt. By separating
the students in this way, the horizontal line of the second

Fig. 1 Evolution of the students’ average scores for the introductory
assessment of 2020-2, distinguishing between groups that proceeded to
the next attempt and those that did not
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attempt represents the same set of students as the red tri-
angle of the first attempt. This shows that the students who
make the second attempt obtain a higher average than the
students who only made the first attempt (identified by the
blue hexagon of the first attempt), thus clearly indicating an
average improvement of the students that performed the next
attempt.

This analysis can be done for every pair of subsequent
attempts to identify the score’s improvement. It is observed
that from the third attempt until the ninth attempt, the stu-
dent’s average fluctuates from 7.5 to 8, showing that students
are having difficulties to improve. Figure1 is limited to the
tenth attempt because the subsequent attempts were per-
formedby too fewstudents to allowus to discuss an “average”
behavior.

The fact that the numerical values of the questions are
randomly selected among a predefined interval makes each
attempt always different from each other and drives the stu-
dent to study to obtain an improvement in his performance.
This should be reflected in their understanding of the under-
lying concepts, and consequently, better performance in the
PE is expected for those students who make more attempts.

Table 2 shows the average scores of the students and the
standard deviation, in parentheses, for the first three attempts
of each FA determined for the five semesters of study. Gen-
erally, students begin the first attempt of each FA with an
average grade of around 5. Vector’s topic appears to be the
most challenging FA, with an average grade that ranges from
4.25 (in the first semester) to 2.75 (in the last semester). In
contrast, Astronomy seems to be the easiest, with an average

starting grade of 7.05, which decreases with each subse-
quent semester up to 6.40. In general, the average grades
consistently increase with the number of attempts, suggest-
ing that some students struggle initially but improve with
newer attempts. It is noteworthy to mention the high stan-
dard deviations, showing significant variability in students’
performance.

The analysis presented in Fig. 1 could be performed for
each student individually. However, given the large number
of students in the discipline and the highdistributionof grades
(presented in Table 2), it is challenging to identify those who
require more attention. Therefore, we chose to train machine
learning algorithms to determine if accurate predictions of
the final situation of the students could be made. The results
will be discussed in the next section.

Machine Learning Results

In this section, the results of the AUC metric obtained for
all machine learning algorithms used will be discussed. In
Fig. 2, themetricAUC is presented as a function of the assess-
ment in chronology order. T1_‘FA’ andT2_‘FA’ represent the
first and second trials for each FA assignment - Introductory
(I), Optics (O), Vectors (V), Kinematics (K), Forces (F) and
Astronomy (A) -, N_Trials represents the number of trials
for that assignment (additional data from FAs).

There are three graphswhich represent the results obtained
for a specific algorithm (from up to down, LR, SVM, and
GBM). The red triangles represent the AUC values when the

Table 2 Students’ average
(standard deviation) grades of
the first three trials in each FA,
by semester and year

Sem.-Year Trial Introduction Optics Vectors Kinematics Forces Astronomy

II-2020 1 5.31(2.42) 4.70(2.93) 4.25(3.28) 4.11(3.44) 5.93(3.56) 7.05(2.86)

2 6.97(2.34) 6.70(2.52) 6.40(2.91) 6.32(3.23) 7.90(2.65) 7.88(2.17)

3 7.55(2.04) 7.01(2.42) 6.94(2.64) 6.74(3.12) 8.24(2.26) 8.92(2.19)

I-2021 1 4.83(2.71) 4.75(2.96) 4.08(3.54) 4.54(3.76) 6.26(3.74) 7.63(2.76)

2 6.44(2.47) 6.85(2.47) 6.45(3.16) 6.62(3.16) 7.75(2.57) 8.08(2.47)

3 7.41(2.13) 7.26(2.36) 7.33(2.86) 7.21(2.70) 8.54(2.16) 8.51(2.43)

II-2021 1 4.25(2.53) 3.78(2.94) 3.46(3.17) 4.37(3.89) 5.58(3.47) 7.13(3.04)

2 5.86(2.39) 5.95(2.59) 5.36(2.94) 6.12(3.37) 7.36(2.52) 7.77(2.52)

3 6.64(2.19) 6.67(2.33) 6.26(2.39) 6.85(3.18) 8.00(2.14) 8.38(2.63)

I-2022 1 4.20(2.62) 3.67(3.14) 3.11(3.11) 4.13(3.74) 5.28(3.53) 6.93(2.92)

2 5.36(2.43) 6.14(2.60) 4.99(3.08) 5.68(3.47) 7.27(2.74) 7.80(2.33)

3 6.13(2.19) 6.87(2.33) 5.83(2.81) 6.15(3.22) 7.50(2.60) 8.49(2.18)

II-2022 1 4.19(2.53) 3.05(2.96) 2.75(3.05) 2.80(3.42) 3.75(3.48) 6.40(2.93)

2 5.32(2.30) 5.10(3.05) 4.92(2.92) 4.56(3.71) 6.59(2.74) 7.70(2.18)

3 6.07(2.55) 5.24(3.22) 5.17(3.29) 4.88(3.16) 7.14(2.52) 8.40(1.73)
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Fig. 2 AUC results as a function of the respective evaluation for the
LR, SVM, and GBM algorithms. Red triangles represent results using
final grades for each assessment, while green circles incorporate grades

from the first two trials (T1_‘FA’ and T2_‘FA’), the number of trials
and final grades. Vertical lines represent one standard deviation derived
from cross-validation

algorithm was trained considering only the final grades of
all assessments, and the green circles show the AUC values
considering also the grades from the first two trials of every
FA and the total number of trials. For all results, a standard
deviation was added as vertical lines as an error bar. It can be
observed that the AUC results obtained show an increasing
trend over each new assessment.

Taking into account the final grade of the introductory
FA for the LR, SVM, and GBM algorithms, the AUC value
obtained is 0.80± 0.03, 0.80± 0.03, and 0.81± 0.02, respec-
tively. With the additional data from the FA these values are
0.81 ± 0.03, 0.87 ± 0.03, and 0.81 ± 0.02 also for the algo-
rithms LR, SVM, and GBM, respectively. As all values are
equal to or greater than 0.8, it could be considered that all
algorithms are good classifiers, as suggested by Hosmer Jr
et al. (2013).

It is interesting to note that considering the additional data
from the FA leads to an increase in theAUCvaluewhen using
the SVM algorithm. This increase ranges from 0.07 in the
first FA (as the highest increment) to 0.01 in the kinematics

FA (as the lowest value). In the case of LR, an increase in
the AUC value is observed in the first two FAs, which does
not exceed 0.01. No improvement is observed when using
the GBM algorithm. Based on these results, the SVM algo-
rithm makes a better prediction of the final situation of the
students. Recently, the SVM algorithm showed acceptable
performance accuracy with unbalanced data (TK&Midhun-
chakkravarthy, 2023).

It is important to note that the additional data from the
FAs do not have a specific temporal point as students have a
time window to complete their attempts. Consequently, this
suggests that interventions could be carried out while the FA
time frame period is still open. This underscores the impor-
tance of using formative assessment data and aligns with the
findings of Bulut et al. (2023), who advocate the inclusion
of formative assessment data in the development of learning
analytic models, instead of complex data such as event logs
or clickstream data, for example.

An important inquiry is about the ability of algorithms
to predict the upcoming semester results. Figure3 helps to
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Fig. 3 Performancemetrics of theSVMalgorithmwith aLinearKernel:
(a) AUC and (b) Fail Precision as a function of the assessments. Red
triangles indicate the prediction evaluation for the 2022-2 semester,
while green circles represent the training evaluation using data from
semesters 2020-2 to 2022-1

answer this inquiry. Figure3(a) and (b) depict the result
derived from the AUC values and the Fail Precision (or the
precision of the students who failed), respectively, as a func-
tion of the respective assessment during the semester. The
results obtained from the trained SVM algorithm (semesters
data from 2020-2 to 2022-1) are represented as green dots,
while the “prediction2” data for 2022-2 is shown as red tri-
angles.

In order to identify an earlier intervention time, we have
limited our presentation to the results up to PE1 evaluation.
From these results, it is evident that the projected AUC and
Fail Precision values for the 2022-2 semester surpass the
results from the previous semesters. This trend holds across
all evaluations. The Fail Precision results offer more specific
insight as they reveal the proportion of students correctly
identified as failing the discipline from the total number of
students predicted to fail. The Fail Precision value for the
initial attempt of the introductory assessment is 0.91, and
this value steadily increases over time.This outcome suggests
that at the beginning of the semester, only 9% of the students
would not be correctly identified as at risk of failing.

2 The term “prediction” here is used as a benchmark of the pre-trained
algorithm’s ability to make predictions.

Final Discussion

With the increasing advancement of technology and the
development of machine learning and artificial intelligence
algorithms, their use in the field of education has grown
strongly in recent years (Sghir et al., 2023). However, the
most published works are in the computing area, which is
somewhat expected because professionals in this field are
the ones who predominantly create algorithms (Sghir et al.,
2023).

The main objective of this work is to provide better sup-
port to students in the introductory physics course. Based
on our logistical limitations and the large number of stu-
dents, it was deemed appropriate to improve the formative
assessments of the course. This implementation was carried
out on a Moodle-based platform, which provides different
tools to simplify the implementation. One way of learning is
through the identification of gaps in our knowledge, and this
should not be penalized. These formative assessments cre-
ated here allow students to identify these gaps because they
do not penalize students for the mistakes they make in their
learning progress. This approach is a type of remediation, as
discussed in the background section, and allows us to give
students the opportunity to engage in self-regulated study.

Assessment questions were designed as key elements or
building blocks of a more comprehensive question with the
aim of incrementally building knowledge. The current design
of the synchronous and asynchronous tutoring system limits
our ability to analyze student-tutor interaction. This is partic-
ularly concerning because a significant portion of students do
not ask questions. Many students, citing work commitments
and time constraints, reportedly do not utilize the tutoring
system.

Limitations

The presented results are strongly dependent on the data
used,making replication potentially challenging due to diver-
sity and the number of students, the topics covered in the
course, and the number of degrees for which the ICF1
course is offered. In addition, this research does not focus
on demographic factors because previous studies have not
observed relevant contributions from these variables to pre-
diction accuracy. However, in this study, we recognize that
demographic factors have a minor positive influence on pre-
diction outcomes. A more detailed analysis of these factors
is an important avenue for future research.

The data used to train the algorithms was collected mainly
during pandemics. Although the algorithms accurately pre-
dicted student performance for the 2022-2 semester (perhaps
after the post-pandemic), it is likely that ongoing adjustments
will be necessary to the algorithm training data. This neces-
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sity arises from the disparities in teaching and assessment
methods (e.g., PE) across different semesters. Furthermore,
course coordination continuously implements modifications,
which also require data updates. Another contributing factor
will be interventions to support students at risk of failure. It
is important to devise a method for incorporating these data
to enhance the performance of the algorithm.

Conclusions

In this study,we implemented formative assessments for each
topic of the course not only to quantify students’ learning
progress, but also to serve as away to identify a specific group
of students needing special attention during the semester.
The primary benefit is that students actively participate in
improving their own knowledge. They receive their grades as
feedback as soon as they submit their assessment and have the
opportunity to review the content and make further attempts
to get better grades. A secondary benefit is that this imple-
mentation generates huge amounts of data that could be used
for the benefit of the students.

To analyze these data, we employ three machine learn-
ing algorithms to classify the final situation of the students,

namely: logistic regression, supporting vector machine, and
stochastic gradient boosting machine. When considering
only the final grades of the assessments, all algorithms
demonstrated excellent classification performance, achiev-
ing an AUC value of 0.8 or higher even for the initial
assessment. In particular, incorporating data from the first
two attempts of the first formative assessment further boosted
the SVM’s AUC value by 7%. This result shows that one
should incorporate formative assessment data when building
learning analytic models and establishes an advantage for the
prediction of students who could fail because we can address
some support as soon as they take the first attempt of the first
formative assessment. The beauty of this method lies in its
simplicity. It requires minimal resources and can be easily
implemented, making it an attractive option.

Appendix

A few questions of the formative assessments are presented.
The questions were translated into English for presentation
in this paper. In order to evaluate a simple and direct concept,
the questions are short and straightforward.

Fig. 4 A sample of a basic question belonging to the vector FA, where the edge length of the squares is randomly selected between 1 and 10, with
one decimal place
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Fig. 5 A sample question of forces, where the values of mass m1 and m2 are randomly selected. The values are limited to a range between 0.5 kg
and 4.5 kg for m1 and 15kg and 25kg for m2
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