

PROCESSO SELETIVO – TURMA 2026 FASE 1 – PROVA DE FÍSICA E SEU ENSINO

\sim	C			•
Caro	professor,	cara	prof	tessora:
	1		1	

Esta prova tem 2 partes. A primeira parte é objetiva, constituída por 14 questões de múltipla escolha, cada uma valendo 0,5 ponto. Essas questões têm sempre 4 opções identificadas pelas letras a, b, c, d. A segunda parte da prova, com valor total 3 pontos, é constituída de duas questões discursivas. As respostas às questões discursivas devem ser devidamente justificadas.

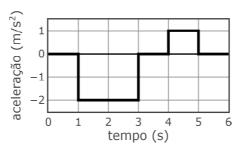
A	duração	da	prova	é	de	3	horas	s.
1 L	auração	uu	prova	•	uC	\mathcal{L}	11010	u

Boa prova.

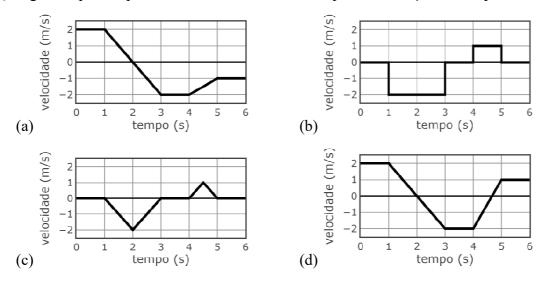
Questões	NOTA
1-14	
15	
16	
Total	

NOME:	 	
ASSINATURA:	 	
Número:		

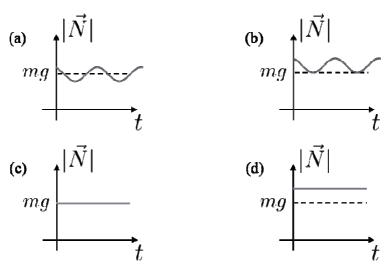
PARTE 1 (valor total: 7,0 pontos)


As questões a seguir têm todas o mesmo valor (0,5 cada).

Questão 1. Um esquiador salta de uma rampa, percorrendo a trajetória pontilhada da figura. Desprezando-se a resistência do ar, para onde aponta a aceleração no ponto A (ponto mais alto da trajetória) indicado na figura?



- (a) A aceleração é nula.
- (b) A aceleração aponta para cima.
- (c) A aceleração aponta para baixo.
- (d) A aceleração aponta para direita.

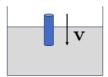

Questão 2. A aceleração em função do tempo de um corpo que se move em linha reta está representada no gráfico a seguir.

Qual gráfico pode representar a velocidade desse corpo como função do tempo?

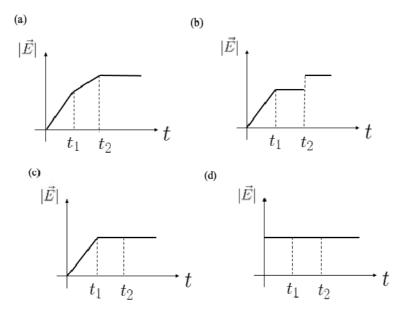
Questão 3. Em uma roda gigante as cadeiras descrevem um movimento circular uniforme, com os assentos sempre na horizontal. Uma pessoa de massa m está sentada em um banco da roda gigante e está parada em relação ao banco durante todo o movimento. Qual dentre os gráficos a seguir melhor representa o módulo da força normal exercida pelo banco sobre a pessoa, $|\vec{N}|$, em função do tempo? (g denota o módulo da aceleração da gravidade.)

Questão 4. Um objeto é formado por duas pequenas esferas, de massas m_1 e m_2 , com $m_2 < m_1$, unidas por uma haste rígida de comprimento L e massa desprezível. Os raios das esferas são desprezíveis em comparação com L. Considere que esse objeto se encontre, inicialmente, em uma situação de equilíbrio instável, com a esfera de massa m_2 acima da esfera de massa m_1 , a qual está em contato com o tampo horizontal de uma mesa fixa no solo. A figura abaixo ilustra essa situação.

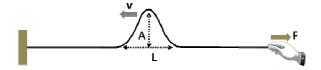
Devido a uma pequena perturbação, o objeto começa a tombar. Desprezando-se a resistência do ar e o atrito com o tampo da mesa, pode-se concluir que, uma vez atingido o equilíbrio, estando a haste na horizontal, a esfera de massa m_1 terá percorrido, em relação à sua posição inicial, uma distância igual a


(a)
$$L/2$$
.

(b)
$$\frac{m_1 - m_2}{m_1 + m_2} L$$


(a)
$$L/2$$
. (b) $\frac{m_1-m_2}{m_1+m_2}L$. (c) $\frac{m_1}{m_1+m_2}L$. (d) $\frac{m_2}{m_1+m_2}L$.

(d)
$$\frac{m_2}{m_1 + m_2} L$$

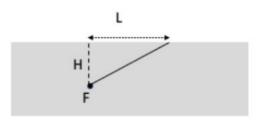

Questão 5. Em t=0 uma pessoa começa a afundar um objeto cilíndrico em um fluido menos denso que o objeto. O cilindro é afundado verticalmente com velocidade constante V e com seu eixo de simetria orientado na vertical, conforme ilustrado na figura.

A partir de $t=t_1$ o cilindro está completamente submerso. Em $t=t_2$ o objeto toca o fundo do recipiente, sendo então solto pela pessoa. Considerando que o movimento seja lento de forma que em todos os instantes seja válida a descrição hidrostática, qual gráfico melhor representa o módulo do empuxo exercido pelo líquido sobre o objeto, $|\vec{E}|$, em função do tempo t?

Questão 6. Uma corda longa com uma extremidade fixa é esticada por uma pessoa que puxa a outra extremidade com uma dada força F. A pessoa move sua mão rapidamente para cima e para baixo, gerando um pulso de altura A e comprimento L que percorre a corda com velocidade V conforme ilustrado na figura.

A pessoa deseja produzir um novo pulso, que se mova mais rapidamente que o primeiro. Para isso ela deve:

- (a) aumentar a altura A do pulso, movendo mão para cima e para baixo por uma distância maior.
- (b) diminuir o comprimento L do pulso, movendo a mão mais rapidamente.
- (c) aumentar a força F, puxando mais a corda.
- (d) produzir pulsos sucessivos, repetindo o movimento da mão.


Questão 7. Uma onda plana monocromática de comprimento de onda λ e linearmente polarizada na direção X (ou seja, com o campo elétrico oscilando ao longo da direção X) se propaga no vácuo ao longo da direção Z de um sistema de coordenadas cartesianas. Uma espira condutora quadrada de lado a é posicionada de modo que seus lados fiquem paralelos aos eixos X e Z. Nessa situação, o menor valor possível de a para que a força eletromotriz induzida na espira seja sempre nula é

(a) 2λ .

(b) λ . (c) $\lambda/2$.

(d) $\lambda/4$.

Questão 8. Uma fonte luminosa F encontra-se em um meio com índice de refração n relativo ao meio externo, conforme ilustrado na figura abaixo. Sabendo que a distância da fonte para a interface vale H = 3 cm, qual o valor mínimo de n para o qual o raio emitido pela fonte ilustrado na figura, que atinge a interface com um deslocamento lateral de L = 4 cm, sofra reflexão total?

(a) n = 4/3

(b) n = 3/4

(c) n = 5/3

(d) n = 5/4

Questão 9. Um objeto A, inicialmente a uma temperatura T_A , é posto em contato térmico com um objeto B, de mesma massa, inicialmente a uma temperatura $T_{\rm B}$. Considerando o calor específico de B desprezível frente ao de A, podemos afirmar que a temperatura de equilíbrio do sistema em boa aproximação será

- (a) T_A .
- (b) T_B.
- (c) indeterminada, pois o sistema nunca atingirá o equilíbrio térmico.
- (d) $(T_A + T_B) / 2$.

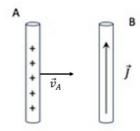
Questão 10. Um pneu calibrado contém 5 mols de ar atmosférico. Um motorista inicia uma viagem longa. No início do percurso, o pneu foi calibrado com ar à temperatura de -3 °C. No final do percurso, o motorista constata que a pressão manométrica de um dos pneus é a mesma, enquanto a dos outros pneus aumentou. Investigando com cuidado, percebeu que o pneu que manteve a pressão estava com um pequeno furo, que não causou deformações no pneu. Sabendo que neste momento a temperatura do ar dentro do pneu é de 27 °C, estime quantos mols de ar deixaram o pneu.

(a) 1mol

(b) 0,5 mol

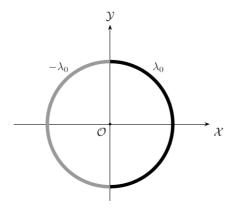
(c) 0,25 mol

(d) 0,125 mol


Questão 11. Um objeto e o ar à sua volta estão em um recinto isolado do exterior e podem trocar energia entre si. O objeto e o ar passam por transformações espontâneas ao final das quais as variações de suas entropias são $\Delta S(objeto)$ e $\Delta S(ar)$. Considere as seguintes situações:

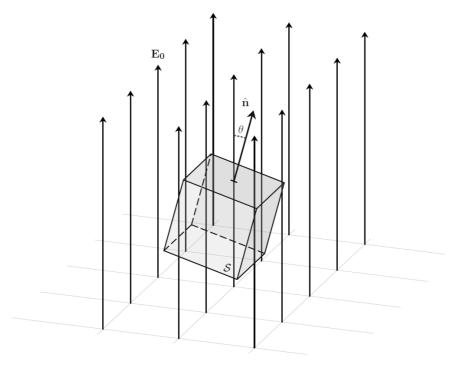
I.
$$\Delta S(objeto) = 3$$
 J/K e $\Delta S(ar) = 5$ J/K
II $\Delta S(objeto) = 3$ J/K e $\Delta S(ar) = -5$ J/K
III. $\Delta S(objeto) = -3$ J/K e $\Delta S(ar) = 5$ J/K
IV. $\Delta S(objeto) = -3$ J/K e $\Delta S(ar) = -5$ J/K

São possíveis apenas as situações


- (a) I e II,
- (b) I e III.
- (c) II e III.
- (d) III e IV.

Questão 12. Considere dois fios muito longos e paralelos entre si. O fio A possui uma densidade de carga elétrica uniforme e positiva e não transporta corrente. Já o fio B é neutro e transporta uma corrente elétrica \vec{J} , conforme ilustrado na figura. Enquanto aproximamos o fio A, com velocidade \vec{v}_A , do fio B, mantido em repouso, o que podemos afirmar sobre a força que o fio B exerce sobre o fio A?

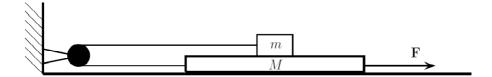
- (a) É atrativa, isto é, aponta no sentido da velocidade \vec{v}_A .
- (b) É repulsiva, isto é, aponta no sentido oposto ao da velocidade \vec{v}_A .
- (c) Aponta para fora do plano da folha.
- (d) Tem a mesma direção da corrente \vec{l} mas sentido oposto.


Questão 13. Considere um anel circular situado no plano OXY de um sistema de coordenadas e cujo centro coincide com a origem. A densidade linear de carga ao longo do anel, para x > 0, é constante e vale $\lambda_0 > 0$ e, para x < 0, vale $-\lambda_0$. O eixo OZaponta para fora da figura.

Considere um ponto P(0,0,z) pertencente ao eixo OZ. A direção e o sentido do vetor campo elétrico no ponto P gerado pela distribuição de carga do anel é

- (a) $-\hat{x}$
- (b) $+\hat{y}$ (c) $+\hat{z}$
- $(d) -\hat{z}$

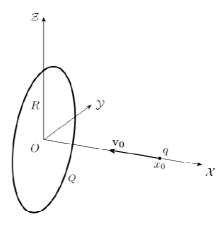
Questão 14. Considere um campo eletrostático uniforme \vec{E}_0 e uma superfície S (fechada) formada pela união de todas as faces de um cubo de aresta a. A normal \hat{n} de uma das faces deste cubo faz um ângulo θ com \vec{E}_0 , como mostra a figura.



O fluxo do campo elétrico através da superfície S vale

- (a) $6|\vec{E}_0|a^2$.
- (b) $|\vec{E}_0| a^2 \cos \theta$.
- (c) $|\vec{E}_0|a^2 \sin \theta$.
- (d) 0.

PARTE 2 (valor total: 3,0 pontos)


Questão 15. Um bloco de massa M está apoiado sobre a superficie horizontal de uma mesa. Sobre ele há outro bloco, de massa m, que está preso à esquerda por um fio ideal que passa por uma roldana ideal fixa a uma parede vertical e tem sua outra extremidade ligada ao bloco de massa M, como indica a figura. Uma força \mathbf{F} , horizontal e para a direita, age sobre o bloco de massa M. Suponha que haja atrito entre as superficies dos blocos que estão em contato, mas que não haja atrito entre o bloco de baixo e a superficie horizontal da mesa. Os coeficientes de atrito estático e cinético entre as superfícies dos blocos em contato são dados, respectivamente, por μ_e e μ_C .

- (a) Suponha, inicialmente, que os blocos estejam em repouso. Indique, por meio de setas, as forças horizontais que atuam em cada bloco. Dentre elas, quais formam par ação e reação?
- (b) Ainda supondo que o sistema esteja em repouso, determine o maior valor de |F| (o módulo de F) para o qual o sistema permanece em repouso.
- (c) Suponha, agora, que o valor de $|\mathbf{F}|$ seja capaz de colocar os blocos em movimento e fazer com que cada um deles tenha uma aceleração constante. Considere, apenas, o intervalo de tempo no qual o bloco de massa m permanece sobre o bloco de massa M. Determine, nesse caso, a aceleração de cada bloco em função de $|\mathbf{F}|$, $\mu_{\rm C}$, m, M e do módulo da aceleração da gravidade g.
- (d) Considere que você propôs este problema em uma aula para estudantes do ensino médio. Durante a discussão, um deles faz o seguinte comentário: *Quando os blocos estão em repouso, não pode haver força de atrito entre eles*. Como você responderia a essa afirmação?

Nome:	Turma PEF 2026

Questão 16. Considere um anel fixo no espaço, de raio R e uniformemente carregado com carga Q > 0. Uma partícula de carga q > 0 e massa m se move única e exclusivamente sob a ação do campo eletrostático criado pelo anel. Por simplicidade, suponha que a partícula se mova somente ao longo do eixo de simetria do anel, denotado por eixo OX e escolha a origem do eixo no centro do anel, como mostra a figura.

(a) Mostre que o potencial eletrostático criado pelo anel em um ponto genérico do eixo OX, isto é, em P(x, 0,0), vale

$$V(x, 0,0) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{\sqrt{x^2 + R^2}}.$$

- (b) Calcule a componente da força eletrostática sobre a partícula ao longo do eixo, $F_x(x)$, em uma posição genérica do eixo OX. Esboce o gráfico de F_x em função de x.
- (c) Suponha que, em t=0, a partícula esteja em $x_0=\sqrt{3}\,R$ e se movendo em direção à origem. Há um valor para o módulo da velocidade dessa partícula abaixo do qual ela não atinge a origem. Calcule esse valor.

lome:	Turma PEF 2026

CARTÃO DE RESPOSTAS – Parte I

_			
$-\alpha$. ~ 4	≈.
	116	191	•1

1	А	В	С	D
2	А	В	С	D
3	А	В	С	D
4	А	В	С	D
5	А	В	С	D
6	А	В	С	D
7	А	В	С	D
8	А	В	С	D
9	А	В	С	D
10	А	В	С	D
11	А	В	С	D
12	А	В	С	D
13	А	В	С	D
14	А	В	С	D

Nome: ______ Turma PEF 2026